Ответы на вопрос:
1) ищете производную; 2) если f'(x) ≥ 0, функция не убывает данном промежутке, если f'(x) ≤ 0, то не возрастает. эти промежутки и есть интервалы монотонности. вот и все. рассмотрим ваш пример: f(x) = 3x² - 18x + 1. f'(x) = 6x - 18. 6x - 18 ≥ 0, т.е. x ≥ 3 - функция не убывает. x ≤ 3 - функция не возрастает. (можно также говорить возрастает/убывает, но тогда надо концы интервалов не включаются: например, здесь если x > 3, то функция возрастает. т.к. на самих концах функция не возрастает/не убывает, эти точки или включаются в оба промежутка, или нет, в зависимости от того, как вы говорите: не убывает/не возрастает или возрастает/убывает). ответ: функция не убывает: x ≥ 3, не возрастает: x ≤ 3. в данном случае с параболой можно было сделать проще. график этой параболы легко представить: это парабола ветвями вверх (a = 3 > 0), значит, до вершины функция убывает, после - возрастает. ищем вершину: x₀ = и ответ получаем точно такой же. это объясняется тем, что, ища производную, мы нашли минимум функции (нулями производной может быть как минимум, так и максимум, надо смотреть на возрастание/убывание), который для параболы ветвями вверх и есть ее вершина. таким образом, вы можете смотреть по графику возрастание/убывание или искать с производной (это универсальнее). надеюсь, что . : ) если что, задавайте вопросы в комментарии.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
Злая4Пташка405.06.2022 10:29
-
джопер27.10.2021 15:33
-
Йщщ15.07.2020 10:56
-
ВладимирЛенин124.08.2022 02:34
-
raisabarsegyan18.02.2020 23:27
-
nodir984244602.09.2020 20:00
-
PolinaRyan11.03.2022 23:45
-
maximbliznetz2p02byq24.06.2020 22:27
-
fida212.08.2020 22:49
-
az1234568712.02.2021 14:55
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.