Авсd–выпуклый четырёхугольник, в котором cad+ bca= 180, и ав = вс + ad. доказать, что caв + dca=сda.
169
403
Ответы на вопрос:
Два способа 1) пусть bc и ad пересекаются в точке t, тогда tca - равнобедренный (cad+bca=180) . продлив за точку c , отрезок равный cd'=ad получаем tdd' - равнобедренный tdd'=bca , значит cdd'a вписанный , откуда bd'a = cda , так как acd = cad' откуда bad' = cab+dca = bd'a=cda (так как ab=db') то есть cab+dca=cda 2) положим что bca=x, cab=n , dca=m , тогда bc=ab*sin(n)/sinx ad=ab*sin(n+x)*sin(m)/(sinx*sin(x-m)) так как bc+ad=ab откуда sin(n)/sinx + sin(n+x)*sin(m)/(sinx*sin(x-m)) = 1 sin(m+n) = sin(x-m) m+n=x-m x=2m+n то есть bca=2dca+cab и так как cda=bca-dca откуда cda=dca+cab
Сначала доказываем подобие треугольников всн и асн (по двум углам). это очевидно, поскольку угол анс и угол внс будут прямыми, а угол асн = углу нвс (из треугольника авс угол нвс = 90 - угол сав, из треугольника асн следует, что угол асн = 90 - угол сав (он же угол так как эти треугольники подобны, то подобны и их соответственные элементы (в нашем случае биссектрисы). поэтому коэффициент подобия треугольников асн и всн равен 1/3. из подобия следует соотношение сторон этих треугольников: ан/сн = сн/вн = ас/вс = 1/3 нас интересует последнее соотношение, нам катеты исходного прямоугольного треугольника авс. пусть ас = х, то вс = 3х, и по т. пифагора имеем: х² + 9х² = (2√5)² 10х² = 20 х = √2 ас = √2, вс = 3√2 площадь треугольника авс равна половине произведения катетов: 1/2×√2×3√2 = 3 ответ: 3
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
kvarkpro13.09.2020 17:39
-
МюслиКотаНомер106.03.2020 19:29
-
shakirovbulat918.02.2021 21:20
-
bochkova123Алеся22.09.2020 23:02
-
masdud200120.11.2021 14:11
-
TruckThorEast02.08.2020 01:11
-
ппво15.07.2022 22:09
-
mprymachok08.10.2020 18:00
-
oksanastrilets20.02.2020 01:05
-
andrew2209199627.08.2020 03:34
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.