Есть ответ 👍

Две пятых умножить на шесть девятых, одна целя одна четвертая умножить на две целых две тритих,три целых одна третья умножить на она целая одна пятая,пять целых одна вторая умножить на две целых две одиннадцатых

218
413
Посмотреть ответы 2

Ответы на вопрос:

gulzazak
4,8(92 оценок)

1) 4/15 2)3целых1/3 3) 4 4) 12
123451527
4,6(97 оценок)

1.

y'' = 12x \\ y '= \int\limits12xdx = \frac{12 {x}^{2} }{2} + C_1 = 6 {x}^{2} + C_1 \\ y = \int\limits(6 {x}^{2} + C_1)dx = \frac{6 {x}^{3} }{3} + C_1x + C_2 = \\ = 2 {x}^{3} + C_1x + C_2

общее решение

y(0) = 2,y'(0) = 20

2 = 0 + 0 + C_2 \\ 20 = 0 + C_1 \\ \\ C_1 = 20 \\ c2 = 2

y = 2 {x}^{3} + 20x + 2

частное решение

2.

y ''+ y' - 6y = 0 \\ \\ y = {e}^{kx} \\ \\ {e}^{kx} ( {k}^{2} + k - 6) = 0 \\ D = 1 + 24 = 25\\ k_1 = \frac{ - 1 + 5}{2} = 2 \\ k_2 = - 3 \\ \\ y = C_1 {e}^{2x} + C_2 {e}^{ - 3x}

общее решение

3.

y ''+ 12y '+ 36y = 0 \\ \\ y = {e}^{kx} \\ \\ k {}^{2} + 12 k + 36 = 0 \\ {(k + 6)}^{2} = 0 \\ k_1 = k_2 = - 6 \\ \\ y = C_1 {e}^{ - 6x} + C_2 {e}^{ - 6x} x

общее решение

4.

y'' - 6y' + 13y = 0 \\ \\ y = {e}^{kx} \\ \\ k {}^{2} - 6k + 13 = 0\\ D= 36 - 52 = - 16\\ k_1 = \frac{ 6 + \sqrt{ - 16} }{2} = \frac{6 + 4i}{2} = 3 + 2i \\ k_2 = 3 - 2i \\ \\ y = {e}^{3 x} (C_1 \sin(2x) + C_2 \cos(2x) )

общее решение

y(0) = 1,y'(0) = 5

y '= 3 {e}^{3x} (C_1 \sin(2x) + C_2 \cos(2x) ) + {e}^{3x} (2C_1 \cos(2x) - 2C_2 \sin(2x)) = \\ = {e}^{3x} ((3C_1 - 2C_2) \sin(2x) + (3C_2 + 2C_1) \cos(2x) )

5 = {e}^{0} ( (3C_1 - 2C_2)\sin(0) + (3C_2 + 2C_1) \cos(0)) \\ 1 = {e}^{0} (C_1 \sin(0) + C_2 \cos(0)) \\ \\ C_2 = 1 \\ 3C_2 + 2C_1 = 5 \\ \\ C_2 = 1\\ C_1 = \frac{5 - 3C_2}{2} = 1

y = {e}^{3x} ( \sin(2x) + \cos(2x))

частное решение

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS