Есть ответ 👍

Две параболы y=2x^2+ax+b и y=-5x^2+cx+d касаются в точке, лежащей на оси ox. через точку d – вторую точку пересечения первой параболы с осью ox – проведена вертикальная прямая, пересекающая вторую параболу в точке a, а общую касательную к параболам – в точке b. найдите отношение da: db.

178
310
Посмотреть ответы 2

Ответы на вопрос:

shaluni2005
4,8(43 оценок)

По условию парабола у=2x2+ax+b пересекает ось ох дважды, т.е квадратное уравнение 2x2+ax+b=0 имеет два корня хо и хd 2x2o+axo +b=0 2х2d+axd+b=0 вычтем 2(x2o–x2d)+а·(xo–xd)=0 ((xo–xd)·(2xo+2xd+а)=0 xo–xd≠0, точки по условию различны. значит 2xo+2xd+а=0 (xo+xd)=–a/2 (# 1) точка касания расположена на оси ox, значит (xo; 0) составим уравнение касательной к параболе у=2x2+ax+b. f(x)=2x2+ax+b f(xo)=0, f`(x)=4x+a f`(xo)=4xo+a y–0=(4хо+a)·(x–xo) – уравнение касательной к первой параболе. составим уравнение касательной к параболе у=2x2+ax+b. f(x)=–5x2+сx+d f(xo)=0, f`(x)=–10x+c f`(xo)=–10xo+c y–0=(–10хо+c)·(x–xo) – уравнение касательной ко второй параболе. касательная общая, значит 4хо+a=–10хо+c ( угловые коэффициенты равны) 14xo + a – c =0 xo=(c–a)/14 ( # 2) у точек а; в и d – одинаковые абсциссы. найдем ординаты. точка а лежит на второй параболе точка в на касательной а(xd; –5x2d+cxd+d) в(хd; (4хо+a)(xd–xo) d(хd; 0) |ad|=|–5x2d+cxd+d| –5x2o+сxo +d=0 d=5x2o–сxo |ad|=|–5x2d+cxd+5x2o–сxo|= =|xo–xd|·|5xo+5xd–c| |вd|=|xo–xd|·|4xo+a| |dа|: |dв|=|5xo+5xd–c|/|4xo+a| так как (xo+xd)=–a/2 ( # 1) xo=(c–a)/14 ( # 2) |dа|: |dв|=|5xo+5xd–c|/|4xo+a|= =|5·(–a/2)–c|/|(4·(c–a)/14)+a|= =|(–5a–2c)/2|/|(2c+5a)/7|=7/2 ответ: 7/2
ankreinas
4,8(80 оценок)

Каждую из величин умнож на 15 2*15=30мм, 3*15=45мм, 4*15=60мм, выразил их в см 30мм=3см, 45мм=4,5см, 60мм=6см и начерти треугольник

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS