Втреугольнике abc угол c равен 60 градусов, ad и be-биссектрисы, пересекающиеся в точке o. найдите угол aob
207
269
Ответы на вопрос:
сумма углов треугольника 180°, поэтому
∠а + ∠в = 180° - ∠с = 180° - 60° = 120°
так как ad и ве биссектрисы, то
∠а + ∠в = 2∠вао + 2∠аво = 120°
2(∠вао + ∠аво) = 120°
∠вао + ∠аво = 60°
из δаов:
∠аов = 180° - (∠вао + ∠аво) = 180° - 60° = 120°
Такое слегка туповатое решение, мне оно не нравится с эстетической точки зрения. o - точка пересечения ad и bk, ch - высота к ab. ясно, что md ii ch ii kn; поэтому an/nh = ak/kc = 1; an = nh = ab*2/5; получилось ah = ab*4/5; следовательно bh = ab/5; из условия следует, что bm = ab/10; то есть bm/bh = 1/2; bm = mh; но bm/mh = bd/cd; то есть bd = cd; это означает ( не больше, не меньше), что треугольник abc - равнобедренный, ab = bc; и ad - не только биссектриса, но и медиана, и высота. это не все чудеса этой . далее. dm - высота к гипотенузе в прямоугольном треугольнике abd. при этом bm = ab/10; am= ab*9/10; откуда dm^2 = bm*am = (ab^2)*9/100; dm = ab*3/10 = 3*bm; прямоугольные треугольники bmd и abd подобны. поэтому ad = 3*bd; поскольку o - точка пересечения медиан, то do = ad/3 = bd; это второе, и последнее чудо - прямоугольный треугольник obd равнобедренный. это означает, что od/ob = 1/ √2; c учетом того, что od = ad/3; bo = bk*2/3; получается ad/bk = √2;
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
GRIEZMAN78906.09.2021 23:41
-
Лизагоу23.04.2020 10:36
-
konovalovilya19.10.2021 14:53
-
Сакура203407.11.2020 17:17
-
LopsterId123654302.06.2022 20:41
-
khairulliniljap00rzn08.11.2020 05:40
-
denic31116.11.2022 13:31
-
gadazak06.07.2020 22:54
-
ellapetrovna21.07.2022 10:48
-
МашаКотик200430.07.2021 20:34
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.