Есть ответ 👍

11*3^2n+10*2^n докажите что кратно 7

286
312
Посмотреть ответы 2

Ответы на вопрос:

alladzyurich
4,5(64 оценок)

Покажем справедливость индукцией по n. при n = 1 кратность подтверждается: 11*3² + 10*2 = 99 + 20 = 119 = 7*17. пусть кратность подтверждается при произвольном n и 11*3²ⁿ + 10*2ⁿ = 11*9ⁿ + 10*2ⁿ кратно 7. докажем, что кратность семи сохраняется и при n + 1: 11*3²⁽ⁿ⁺¹⁾ + 10*2ⁿ⁺¹ = 11*9ⁿ⁺¹ + 10*2ⁿ⁺¹ = 9*11*9ⁿ + 2*10*2ⁿ = 7*11*9ⁿ + 11*9ⁿ + 11*9ⁿ + 10*2ⁿ + 10*2ⁿ = 7*11*9ⁿ + 2(11*9ⁿ + 10*2ⁿ). первый член 7*11*9ⁿ кратен 7, а сумма 11*9ⁿ + 10*2ⁿ кратна 7 по предположению индукции, следовательно и вся сумма 7*11*9ⁿ + 2(11*9ⁿ + 10*2ⁿ) кратна 7. отсюда следует кратность семи числа 11*3²ⁿ + 10*2ⁿ.
zaharovvlad1337
4,4(14 оценок)

6a-3b= 3(2a-b), поэтому 6a-3b = 3*5 = 15

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS