Чему равен: а) модуль sin x б) модуль cos x в) модуль tg x г) модуль ctg x
Ответы на вопрос:
раскроем модуль:
1) если cos x ≥ 0, то исходное уравнение примет вид 1 + 2sin x · cos x = 0.
воспользуемся формулой синуса двойного угла, получим:
1 + sin 2x = 0; sin 2x = -1;
2x = -π/2 + 2πn, n € z;
x = -π/4 + πn, n € z. так как cos x ≥ 0, то x = -π/4 + 2πk, k € z.
2) если cos x < 0, то заданное уравнение имеет вид 1 – 2sin x · cos x = 0. по формуле синуса двойного угла, имеем:
1 – sin 2x = 0; sin 2x = 1;
2x = π/2 + 2πn, n € z;
x = π/4 + πn, n € z. так как cos x < 0, то x = 5π/4 + 2πk, k € z.
3) наибольший отрицательный корень уравнения: -π/4; наименьший положительный корень уравнения: 5π/4.
искомая разность: 5π/4 – (-π/4) = 6π/4 = 3π/2 = 3 · 180°/2 = 270°.
ответ: 270°. в)ты график функции y=tg(x) знаешь?
так вот для первого случая та часть что внизу оси х была отобразится зеркально вверх (для отрицательных х) ; верхняя часть останется без изменений.
а для второго случая, нижних частей тоже не будет, но каждая верхняя ветвь отобразится зеркально (налево) относительно оси y (для отрицательных значений х) , а для положительных х опять имеем верхнюю ветвь обычного графика tg(x)
кажется так должно получиться..
еcos x=1 cos x=-1
x=2pi*n
x=pi+2pi*n
=+-pi*n
ctg x=1 ctg x=-1
x=pi/4+pi*k
x=3pi/4+pi*k
используй свойство модулясли я правильно объяснил.. в голове-то у меня всё правильно нарисовалось, но вам туда г)
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
Lori0425.02.2021 06:07
-
ggwp4907.03.2022 21:25
-
ИбрагимЛе03.02.2021 14:44
-
Бокс11119.11.2020 13:49
-
Nakonechna2117.01.2021 16:57
-
NikaEvgen23.07.2021 17:16
-
SadEngineer17.05.2021 08:31
-
елен919.12.2021 23:35
-
vinks290526.02.2021 00:20
-
mchizhevskayap010bm09.12.2021 11:18
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.