Есть ответ 👍

Встране аэродромии 30 городов, некоторые города соединены двусторонними авиарейсами. при этом, между любыми двумя существует только один разумный авиамаршрут (т. е. маршрут, на котором не надо пользоваться одним и тем же авиарейсом в разных направлениях). для каждого из городов вычислили авиарасстояние до столицы. оно рассчитывается как минимальное количество рейсов, необходимое, чтобы долететь из этого города до столицы. для каждых двух городов а и в, соединённых авиарейсом, стоимость билета из города а в город в (также как и обратного) в фартингах равна наибольшему из авиарасстояний от а и в до столицы. в частности, билет до столицы из любого соединённого с ней прямым рейсом города стоит 1 фартинг; все остальные рейсы, вылетающие из этих городов, стоят 2 фартинга и так далее. коля много путешествовал по аэродромии (не только на самолётах) и в конце года оказалось, что он ровно по разу воспользовался каждым из авиарейсов (то есть, для каждых двух городов а и в, соединённых прямым авиарейсом, он слетал либо из а в в, либо из в в а, причём только в одну их сторон). какое наибольшее количество фартингов он мог потратить на авиаперелёты?

172
443
Посмотреть ответы 2

Ответы на вопрос:

Nnas22
4,4(65 оценок)

Докажем по индукции, что если городов n, то авиарейсов n - 1. база индукции: если n = 1, то авиарейсов нет. если n = 2, то есть только один авиарейс из первого города во второй. переход: предположим, это верно для всех количеств городов, меньших n. отменим один авиарейс. так как из каждого города в каждый был только один разумный авиамаршрут, то все города разобьются на две группы из l и k городов, в каждой группе из каждого города в каждый есть ровно один маршрут, в город из другой группы попасть нельзя. по предположению в первой группе l - 1 рейс, во второй k - 1 рейс, тогда с учётом отменённого рейса получаем (l - 1) + (k - 1) + 1 = (l + k) - 1 = n - 1 рейсов. занумеруем города. упорядочим все рейсы по стоимости:   a1 < = a2 < = a3 < = < = a29. соседние a отличаются в стоимости не больше, чем на 1, тогда максимальная сумма будет в случае 1 < = 2 < = 3 < = < = 29, это соответствует ситуации, когда рейсы есть только между с номерами, отличающимися на 1, тогда города расположены "в линию". ответ: 1 + 2 + 3 + + 29 = 29 * 30 / 2 = 290 фартингов.

Ответ будет такой 9 * 1/3=3.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS