Нарисать алгоритм нахождения значения функции на pascal: y=(x2 + 3x -4 )/(x - 7)
Ответы на вопрос:
Рефераты
Содержание
Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно
Перевод чисел между системами счисления, основания которых являются степенями числа 2 (q = 2n), может производиться по более простым алгоритмам. Такие алгоритмы могут применяться для перевода чисел между двоичной (q = 21), восьмеричной (q = 23) и шестнадцатеричной (q = 24) системами счисления.
Перевод чисел из двоичной системы счисления в восьмеричную. Для записи двоичных чисел используются две цифры, то есть в каждом разряде числа возможны 2 варианта записи. Решаем показательное уравнение:
2 = 2i . Так как 2 = 21, то i = 1 бит.
Каждый разряд двоичного числа содержит 1 бит информации.
Для записи восьмеричных чисел используются восемь цифр, то есть в каждом разряде числа возможны 8 вариантов записи. Решаем показательное уравнение:
8 = 2i . Так как 8 = 23, то i = 3 бита.
Каждый разряд восьмеричного числа содержит 3 бита информации.
Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в восьмеричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то необходимо ее дополнить слева нулями.
Переведем таким двоичное число 1010012 в восьмеричное:
101 0012 => 1 × 22 + 0 × 21 + 1 × 20 0 × 22 + 0 × 21 + 1 × 20 => 518.
Для упрощения перевода можно заранее подготовить таблицу преобразования двоичных триад (групп по 3 цифры) в восьмеричные цифры:
Двоичные триады 000 001 010 011 100 101 110 111
Восьмеричные цифры 0 1 2 3 4 5 6 7
Для перевода дробного двоичного числа (правильной дроби) в восьмеричное необходимо разбить его на триады слева направо и, если в последней, правой, группе окажется меньше трех цифр, дополнить ее справа нулями. Далее необходимо триады заменить на восьмеричные числа.
Например, преобразуем дробное двоичное число А2 = 0,1101012 в восьмеричную систему счисления:
Двоичные триады 110 101
Восьмеричные цифры 6 5
Получаем: А8 = 0,658.
Перевод чисел из двоичной системы счисления в шестнадцатеричную. Для записи шестнадцатеричных чисел используются шестнадцать цифр, то есть в каждом разряде числа возможны 16 вариантов записи. Решаем показательное уравнение:
16 = 2i . Так как 16 = 24, то i = 4 бита.
Каждый разряд шестнадцатеричного числа содержит 4 бита информации.
Таким образом, для перевода целого двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры (тетрады), начиная справа, и, если в последней левой группе окажется меньше четырех цифр, дополнить ее слева нулями. Для перевода дробного двоичного числа (правильной дроби) в шестнадцатеричное необходимо разбить его на тетрады слева направо и, если в последней правой группе окажется меньше четырех цифр, то необходимо дополнить ее справа нулями.
Затем надо преобразовать каждую группу в шестнадцате-ричную цифру, воспользовавшись для этого предварительно составленной таблицей соответствия двоичных тетрад и шестнадцатеричных цифр.
Переведем целое двоичное число А2 = 1010012 в шестнадцатеричное:
Двоичные тетрады 0010 1001
Шестнадцатеричные цифры 2 9
В результате имеем: А16 = 2916.
Переведем дробное двоичное число А2 =0,1101012 в шестнадцатеричную систему счисления:
Двоичные тетрады 1101 0100
Шестнадцатеричные цифры D 4
Получаем: А16 = 0,D416.
Для того чтобы преобразовать любое двоичное число в восьмеричную или шестнадцатеричную системы счисления, необходимо произвести преобразования по рассмотренным выше алгоритмам отдельно для его целой и дробной частей.
Перевод чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную. Для перевода чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную необходимо цифры числа преобразовать в группы двоичных цифр. Для перевода из восьмеричной системы в двоичную каждую цифру числа надо преобразовать в группу из трех двоичных цифр (триаду), а при преобразовании шестнадцатеричного числа - в группу из четырех цифр (тетраду).
Например, преобразуем дробное восьмеричное число А8 = 0,478 в двоичную систему счисления:
Восьмеричные цифры 4 7
Двоичные триады 100 111
Получаем: А2 = 0,1001112 .
Переведем целое шестнадцатеричное число А16 = АВ16 в двоичную систему счисления:
Шестнадцатеричные цифры А В
Двоичные тетрады 1010 1011
В результате имеем: А2
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Информатика
-
Черноболь66621.01.2023 11:04
-
alexandra18924.07.2021 03:13
-
nasibyannn31.01.2022 09:15
-
BarTGamE77711.06.2023 17:26
-
лерунька717.03.2020 22:41
-
alan00119918.06.2021 22:02
-
Miyazaki07.04.2020 09:27
-
Syrkova123.09.2021 05:35
-
sheealice11.12.2020 23:20
-
mertysan07.05.2023 20:22
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.