Ответы на вопрос:
Простейшими тригонометрическими неравенствами называются неравенства вида sinx\vee a, cosx\vee a, tgx\vee a, ctgx\vee a, где \vee – один из знаков < ,\; > ,\; \leq,\; \geq, a\in r. вы должны прежде, конечно, хорошо ориентироваться в тригонометрическом круге и уметь решать простейшие тригонометрические уравнения (часть i, часть ii). круг тригонометрический кстати, умение решать тригонометрические неравенства может пригодиться, например, в №11 егэ по . сначала мы рассмотрим простейшие тригонометрические неравенства с синусом и косинусом. во второй части статьи – с тангенсом, котангенсом. пример 1. решить неравенство: cosx< \frac{1}{2}. решение: отмечаем на оси косинусов \frac{1}{2}. все значения cosx, меньшие \frac{1}{2}, – левее точки \frac{1}{2} на оси косинусов. 87 отмечаем все точки (дугу, точнее – серию дуг) тригонометрического круга, косинус которых будет меньше \frac{1}{2}. ен полученную дугу мы проходим против часовой стрелки то есть от точки \frac{\pi}{3} до \frac{5\pi}{3}. обратите внимание, многие, назвав первую точку \frac{\pi}{3}, вместо второй точки \frac{5\pi}{3} указывают точку -\frac{\pi}{3}, что неверно! становится видно, что неравенству удовлетворяют следующие значения x: \frac{\pi}{3}+2\pi n следите за тем, чтобы «правая/вторая точка» была бы больше «левой/первой». не забываем «накидывать» счетчик 2\pi n,\; n\in z. вот так выглядит графическое решение неравенства не на тригонометрическом круге, а в прямоугольной системе координат: тригонометрические неравенства пример 2. решить неравенство: cosx\geq -\frac{\sqrt2}{2}. решение: отмечаем на оси косинусов -\frac{\sqrt2}{2}. все значения cosx, большие или равные -\frac{\sqrt2}{2} – правее точки -\frac{\sqrt2}{2}, включая саму точку. тогда выделенные красной дугой аргументы x отвечают тому условию, что cosx\geq -\frac{\sqrt2}{2}. г-\frac{3\pi}{4}+2\pi n\leq x\leq \frac{3\pi}{4}+2\pi n,\; n\in z. пример 3. решить неравенство: sinx\geq -\frac{\sqrt3}{2}. решение: отмечаем на оси синусов -\frac{\sqrt3}{2}. все значения sinx, большие или равные -\frac{\sqrt3}{2}, – выше точки -\frac{\sqrt3}{2}, включая саму точку. 67 «транслируем» выделенные точки на тригонометрический круг: 6 -\frac{\pi}{3}+2\pi n \leq x\leq \frac{4\pi}{3}+2\pi n,\; n\in z пример 4. решить неравенство: sinx< 1. решение: кратко: л \frac{\pi}{2}+2\pi n или все x, кроме \frac{\pi}{2}+2\pi n,\; n\in z. пример 5. решить неравенство: sinx\geq 1. решение: неравенство sinx\geq 1 равносильно уравнению sinx=1, так как область значений функции y=sinx – [-1; 1]. 78н x=\frac{\pi}{2}+2\pi n,\; n\in z. пример 6. решить неравенство: sinx< \frac{1}{3}. решение: действия – аналогичны применяемым в примерах выше. но дело мы имеем не с табличным значением синуса. здесь, конечно, нужно знать определение арксинуса. 89 \pi -arcsin\frac{1}{3}+2\pi n если не понятно, загляните сюда –> + показать
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
aldiyar2002092218.02.2021 18:45
-
ник502819.09.2021 09:08
-
JSG11127.12.2021 15:30
-
Евгеша20011118.09.2021 12:30
-
fuhohejo02.03.2021 09:32
-
AlminaLaipanova29.07.2020 18:16
-
digo223.01.2023 19:58
-
staennayanina14.12.2022 14:38
-
Jakai280822.01.2021 12:18
-
Масим00705.07.2022 21:34
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.