Есть ответ 👍

При каких целых значениях n выражение (n^3+5n^2+8n+17)/(n^2+2n+2) является целым числом?

254
381
Посмотреть ответы 2

Ответы на вопрос:

ekateria1411
4,5(29 оценок)

умножим знаменатель дроби на 5: 5*(n^2+2n+2)=5n^2+10n+10. преобразуем числитель дроби: n^3+5n^2+8n+17 = n^3+5n^2+10n-2n+10+7 = 5n^2+10n+10+n^3-2n+7 = 5*(n^2+2n+2)+n^3-2n+7. отсюда видно, что для того чтобы исходная дробь была целым числом должно выполняться условие n^3-2n+7 = k*(n^2+2n+2), где k - целое.  но, это невозможно ни при каких n. при n=0 получаем 7/2 - дробное число. заметим, что n^3-2n+7 и n^2+2n+2 имеют разную четность, поэтому если n = 2k, где k - целое, n^3-2n+7 = 8k^3-4k+7 является нечетным числом, тогда как n^2+2n+2 = 4k^2+4k+2 число четное. наоборот, если n = 2k+1, где k - целое, n^3-2n+7 = (2k+1)^3-2(2k+1)+7=8k^3+12k^2+6k+1-4k-2+7 =  8k^3+12k^2+2k+6  четное число, а n^2+2n+2 = (2k+1)^2+2(2k+1)+2 = 4k^2+4k+1+4k+2+2=4k^2+8k+5 число нечетное. а такие числа не могут делиться друг на друга нацело. т. о. n^3-2n+7 не делится нацело на n^2+2n+2 ни при каких целых n.

ответ: ни при каких целых n.

LuzuVloks
4,8(33 оценок)

(10/25-b^4)+(1/5+/5-b^2) 10/(5-b^2)(5+b^2)+1/b^2+5-1/5-b^2 2/b^2+5 b^2> 0

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS