Число a кальчево натуральных чисел ,которые с числом взаимно прости и меньше от него . найти сумму наименьшего и наибольшего цифра и числе a. ответ` 7 , почему?
157
331
Ответы на вопрос:
Попробую угадать, что условие можно написать так: пусть а - количество натуральных чисел, взаимно простых с числом 2017^2 и меньших него. найти сумму наименьшей и наибольшей цифры десятичной записи числа а. посчитаем число чисел, не больших 2017^2 и не взаимно простых с 2017^2 (если к этому числу прибавить a, должно получиться 2017^2 - число всех чисел, не больших 2017^2). так как 2017 - простое число, то имеют общие делители с числом 2017^2 те и только те числа, которые делятся на 2017. их будет 2017: 2017 * 1, 2017 * 2, 2017 * 3, 2017 * 2016, 2017 * 2017 = 2017^2. значит, a = 2017^2 - 2017 = 2016 * 2017 = 4 066 272 наибольшая цифра равна 7 наименьшая цифра равна 0 ответ: 7 + 0 = 7.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
KrystallBlack14.05.2022 04:44
-
sofiika1704.03.2021 06:45
-
nastya273926.03.2021 00:57
-
Aminka21010215.02.2022 22:08
-
abaevadilnaz06.08.2022 10:22
-
ritagribaleva26.01.2022 04:06
-
daryasergeryna20.09.2021 06:51
-
makusolka13.03.2023 22:38
-
thefirststudent02.03.2021 07:23
-
Barsik1284704.12.2022 04:39
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.