Есть ответ 👍

Решить логарифмическое ! логарифм от (1+логарифм в квадрате от x по основанию 7) по основанию (1+логарифм от 7 по основанию x) меньше либо равен 1. правильный ответ: (0; 1/7) и (1; 7]. у меня вдобавок получается еще и (1/7; 1). почему этот промежуток не входит?

289
414
Посмотреть ответы 2

Ответы на вопрос:

S1mple11111
4,4(35 оценок)

Требуется решить следующее неравенство: для начала немного : введём замену. она очевидна. пусть тогда наше неравенство принимает вид:   это неравенство - хороший кандидат на использование метода замены множителя. рабочую формулу метода для логарифмических неравенств вы можете посмотреть в сети интернет, здесь же я только использую её. кроме того, я использовал то, что если в логарифме переставить местами основание и логарифмируемое выражение, то получатся взаимнообратные числа, что я и учёл при замене. используем метод: здесь помимо рабочей формулы(она первая в системе), я обязан был учесть ещё и одз неравенства. но логарифмируемое выражение и так всегда больше 0, поскольку к 1 прибавляется квадрат - заведомо положительное число, а основание никогда не равно 1, поскольку для этого частное 1/t должно быть равно 0, но это также никогда не произойдёт. поэтому дополнительно к формуле требуем лишь, чтобы основание было больше 0. дальше решаем каждое из неравенство по очереди: это обыкновенное неравенство, решаемое методом интервалов, поэтому здесь я разделил на , не изменив знак неравенства. это связано с тем, что данный трёхчлен всюду положительный(дискриминант отрицательный, ветви параболы направлены вверх, то есть, парабола трёхчлена полностью лежит над осью ox). ну и последнее неравенство легко решается методом интервалов. ∈ ∞ ∪ теперь решаем второе неравенство(сразу приводим левую часть к общему знаменателю): ∈ ∞ ∪ ∞) решение системы, как известно, пересечение решений обоих неравенств. следовательно, решение системы t ∈ (-∞ ∪ теперь,когда мы получили окончательные решения для t, можно вернуться к переменной x, подставив вместо t логарифм и решив полученную совокупность неравенств. или  первое неравенство легко решается: вроде бы оно так, но при таких пробегах x вполне может уйти за 0 в отрицательную сторону, а для логарифма это - критично. так что ограничим ещё и 0 слева и получим - часть решения нашего неравенства. дальше решаем двойное неравенство. его лучше записать как систему из левого неравенства и из правого неравенства. решение, соответственно, есть пересечение решений обоих. - а вот тут x уходит уже в сторону положительных чисел, так что подпирать нигде ничем не нужно. - но и тут x уходит в отрицательном направлении, если зайти слишком далеко, то есть, опять подпираем нулём: коли двойное неравенство - система, ищем лишь пересечение решений. не забываем, что это ещё не всё. у нас было первое неравенство. берём оба этих решения и объединяем их(решения совокупности именно объединяются), то есть, берём оба и записываем в ответ. итак, ответ состоит из двух частей, которые и пишем: x∈ ∪ - это и есть ответ. как видите, он вполне совпал с тем, что должно было быть.
asel07071
4,6(6 оценок)

ххахаххаха не правильно же это

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS