Есть ответ 👍

1. площадь осевого сечения цилиндра равна 20 см2. найдите площадь боковой поверхности цилиндра. 2. площадь осевого сечения конуса равна 0,6 см2. высота конуса равна 0,1 см. вычислите площадь полной поверхности конуса. 3. найдите объем тела, полученного при вращении прямоугольника со сторонами 6 см и 10 см вокруг большей стороны.

172
383
Посмотреть ответы 2

Ответы на вопрос:

maloyzolotov
4,8(85 оценок)

1. a×b=20, a=d, b=h s=пdh=3,14×20=62,8 см² 2. 1) s треугольника (соевого сечения) =½ аh => основание треугольника (диаметр конуса) = 0,6×2: 0,1=12 см. 2) найдём образующую конуса. это гипотенуза в прямоугольном треугольнике. по теореме пифагора: l²=6²+0,1² l²=36,01 3) sбок=пrl=3,14×6×кореньиз36,01 s полная =sбок+пr²=sбок+3,14×36=sбок+113,04 3. a=6=r b=10=h v=пr²h=3,14×36×10=1130,4 см³
ледок
4,6(94 оценок)

Внизу

Объяснение:

Подобны, Если пирамида пересечена плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделены на пропорциональные части;

2) многоугольник сечения подобен основанию;

3) площади основания и сечения относятся, как квадраты их расстояний от вершины.

Доказательство:

1) Так как \beta\||\alpha и они пересечены плоскостью грани ASB по прямым A_{1}B_{1} и AB , то A_{1}B_{1}||AB. Аналогично получим, что B_{1}C_{1}||BC, C_{1}D_{1}||CD и т. д. и B_{1}H_{1}||BH. На сторонах углов ASB, BSC, CSD, ... , BSH получим пропорциональные отрезки:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B}; \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C}; \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D}; \ldots  ; \frac{SB_{1}}{B_{1}B} = \frac{SH_{1}}{H_{1}H}.

Отсюда:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D} =\ldots= \frac{SH_{1}}{H_{1}H}.

2) \triangle{A_{1}SB_{1}}\sim\triangle{ASB}; \triangle{B_{1}SC_{1}}\sim\triangle{BSC}; \triangle{C_{1}SD_{1}}\sim\triangle{CSD}

и т.д. Значит

\frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA}; \frac{B_{1}C_{1}}{BC} = \frac{SB_{1}}{SB}; \frac{C_{1}D_{1}}{CD} = \frac{SC_{1}}{SC} и т.д.

Но правые отношения в этих пропорциях равны между собой на основании только что доказанной первой теоремы, поэтому равны между собой и левые отношения:

\frac{A_{1}B_{1}}{AB} = \frac{B_{1}C_{1}}{BC} = \frac{C_{1}D_{1}}{CD} и т.д.

Т. е. стороны многоугольников A_{1}B_{1}C_{1}D_{1}E_{1} и ABCDE пропорциональны. Соответствующие углы этих многоугольников равны. Следовательно, A_{1}B_{1}C_{1}D_{1}E_{1} \sim ABCDE.

3) Пусть Q и Q' — площади основания и сечения. Имеем:

\frac{Q}{Q'} = \frac{A_{1}B_{1}^2}{AB^2};

Но \frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA} = \frac{SH_{1}}{SH} (по теореме 1), поэтому

\frac{Q}{Q'} = \frac{SH_{1}^2}{SH^2}.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS