Есть ответ 👍

Решите уравнение 4.8х=25.92 32х=2.32 286.1х=1144,4 41.8х=1463 0.021х=1.659 0.0326х=0.163

150
344
Посмотреть ответы 2

Ответы на вопрос:


1) 4,8x=25,92 /: 4,8        x=5,4ответ : 5,4

2) 32x=2,32 /: 32      x=0,0725ответ : 0,0725

3) 286,1x=1144,4 /: 286,1        x=3,9989514155ответ : 3,99895141554)41,8x=1463    x=35ответ : 355)0,021x=1,659      x=79ответ : 796) 0,0326x=0,163      x=5ответ : 5     

MichellDany04
4,8(58 оценок)

Формула содержится в «Метрике» Герона Александрийского (I век н. э.) и названа в его честь (хотя она была известна ещё Архимеду). Герон интересовался треугольниками с целочисленными сторонами, площади которых тоже являются целыми, такие треугольники носят название героновых, простейшим героновым треугольником является египетский треугольник.

Доказательство 1 (тригонометрическое):

{\displaystyle S={1 \over 2}ab\cdot \sin {\gamma }},

где {\displaystyle \ \gamma } — угол треугольника, противолежащий стороне {\displaystyle c}. По теореме косинусов:

{\displaystyle c^{2}=a^{2}+b^{2}-2ab\cdot \cos \gamma ,}

Отсюда:

{\displaystyle \cos \gamma ={a^{2}+b^{2}-c^{2} \over 2ab},}

Значит,

{\displaystyle \ \sin ^{2}\gamma =1-\cos ^{2}\gamma =(1-\cos \gamma )(1+\cos \gamma )=}{\displaystyle ={{2ab-a^{2}-b^{2}+c^{2}} \over 2ab}\cdot {{2ab+a^{2}+b^{2}-c^{2}} \over 2ab}=}{\displaystyle ={{c^{2}-(a-b)^{2}} \over 2ab}\cdot {{(a+b)^{2}-c^{2}} \over 2ab}={1 \over 4a^{2}b^{2}}(c-a+b)(c+a-b)(a+b-c)(a+b+c)}.

Замечая, что {\displaystyle a+b+c=2p}, {\displaystyle a+b-c=2p-2c}, {\displaystyle a+c-b=2p-2b}, {\displaystyle c-a+b=2p-2a}, получаем:

{\displaystyle \sin \gamma ={2 \over ab}{\sqrt {p(p-a)(p-b)(p-c)}}.}

Таким образом,

{\displaystyle S={1 \over 2}ab\sin \gamma ={\sqrt {p(p-a)(p-b)(p-c)}},}

ч.т.д.

Доказательство 2 (на основе теоремы Пифагора):

Треугольник со сторонами a, b, c и высотой h, разделяющей основание c на d и (c − d).

По теореме Пифагора имеем следующие равенства для гипотенуз: a2 = h2 + (c − d)2 и b2 = h2 + d2 — см. рисунок справа. Вычитая из первого равенства второе, получаем a2 − b2 = c2 − 2cd. Это уравнение позволяет нам выразить d через стороны треугольника:

{\displaystyle d={\frac {-a^{2}+b^{2}+c^{2}}{2c}}}

Для высоты h у нас было равенство h2 = b2 − d2, в которое можно подставить полученное выражение для d и применить формулы для квадратов:

{\displaystyle {\begin{aligned}h^{2}&=b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}={\frac {(2bc-a^{2}+b^{2}+c^{2})(2bc+a^{2}-b^{2}-c^{2})}{4c^{2}}}\\&={\frac {((b+c)^{2}-a^{2})(a^{2}-(b-c)^{2})}{4c^{2}}}={\frac {(b+c-a)(b+c+a)(a+b-c)(a-b+c)}{4c^{2}}}\\\end{aligned}}}

Замечая, что {\displaystyle b+c-a=2p-2a}, {\displaystyle a+b+c=2p}, {\displaystyle a+b-c=2p-2c}, {\displaystyle a-b+c=2p-2b}, получаем:

{\displaystyle {\begin{aligned}h^{2}&={\frac {2(p-a)\cdot 2p\cdot 2(p-c)\cdot 2(p-b)}{4c^{2}}}={\frac {4p(p-a)(p-b)(p-c)}{c^{2}}}\end{aligned}}}

Используя основное равенство для площади треугольника {\displaystyle S={\frac {ch}{2}}} и подставляя в него полученное выражение для h, в итоге имеем:

{\displaystyle {\begin{aligned}S={\sqrt {{\frac {c^{2}}{4}}\cdot {\frac {4p(p-a)(p-b)(p-c)}{c^{2={\sqrt {p(p-a)(p-b)(p-c)}}\end{aligned}}}

ч.т.д.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS