Ответы на вопрос:
Вопрос сформулирован крайне некорректно! попробую крайне корректно на него ответить. любому числу на отрезке [0,1]
Здесь используются перестановки с повторениями. допустим, есть группа из n различных элементов. тогда количество способов их расставить на n мест равно n! . теперь пусть внутри группы из n элементов есть повторяющиеся элементы. допустим, есть k_1 элементов, равных a_1; k_2 элементов, равных a_2; ; k_q элементов, равных a_q. выполняется условие k_1 + k_2 +..+k_q = n. тогда число различных способов расставить n уже не различных элементов на n мест равно n! /(k_1! * k_2! * * применим эту формулу к этой . будем отталкиваться от количества 1 и 4. пусть оно равно k. 1) k = 0. тогда имеется 1 группа с 5 элементами, равными 7, а количество способов расставить их на 5 мест равно 5! /5! = 1. 2) k = 1. тогда имеется 3 группы: 1-я группа состоит из одного элемента 1, 2-я группа состоит из одного элемента 4, 3-я группа состоит из трех элементов 7. тогда число способов расставить их равно 5! /(1! *1! *3! )=20. 3) k = 2. имеется 3 группы: 1-я группа состоит из двух элементов, равных 1, 2-я группа состоит из двух элементов, равных 4, третья группа состоит из одного элемента, равного 7. тогда число способов расставить их равно 5! /(2! *2! *1! )=30. случаи с k > 2 невозможны, так как в пятизначном числе не может быть одновременно k > 2 единиц и четверок. суммируем полученные способы: 1+20+30=51.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
dasha01059806.09.2021 23:23
-
АлексейРИ16.11.2021 06:59
-
angel15030106.01.2023 15:23
-
gjgyctfrf10.12.2021 10:21
-
betmenduma30.05.2021 19:38
-
innabigun8404.06.2023 10:22
-
ibondarenk201324.06.2021 07:56
-
Skapisheva1515151525.08.2021 03:53
-
irusikkk26.12.2020 11:55
-
Prikolno201807.06.2021 17:38
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.