С, что-нибудь ! 1. найдите производную функции f(x)=(3x+2)^3*(2x-1)^4 2. вычислите производную функции f(x)=x^2-x-6 в точках пересечения графика этой функции с осями координат 3. решите неравенство (cos2x+3tgпи/8)'> =2cosx
176
187
Ответы на вопрос:
1. f (x) = (3x + 2)³·(2x - 1)⁴f'(x) = 3·(3x + 2)²·3·(2x - 1)⁴ + (3x + 2)³·4·(2x - 1)³·2 = (3x + 2)²·(2x - 1)³·(9·(2x - 1) + 8·(3x + 2)) = (3x + 2)²·(2x - 1)³·(18x - 9 + 24x + 16) = (3x + 2)²·(2x - 1)³·(42x + 7) = 7·(3x + 2)²·(2x - 1)³·(6x + 1)2. f (x) = x² - x - 6f'(x) = 2x - 1 координаты x точек пересечения с oх: x² - x - 6 = 0по теореме виета: x₁ = -2x₂ = 3 координата x точки пересечения с oy: x₃ = 0.f'(-2) = 2· (-2) - 1 = -5 f'(3) = 2·3 - 1 = 5 f'(0) = 2·0 - 1 = -13. (cos 2x + 3·tg π/8)' ≥ 2·cos x-2·sin 2x ≥ 2·cos x-sin 2x ≥ cos x cos x + sin 2x ≤ 0 cos x + 2·sin x·cos x ≤ 0 cos x·(1 + 2·sin x) ≤ 0 cos x ≤ 0 cos x ≥ 0 (1 + 2·sin x) ≥ 0 (1 + 2·sin x) ≤ 0 cos x ≤ 0 cos x ≥ 0 sin x ≥ -1/2 sin x ≤ -1/2 x ∈ [π/2 + 2πn; 3π/2 + 2πn], n ∈ z x ∈ [-π/2 + 2πm; π/2 + 2πm], m ∈ z x ∈ [-π/6 + 2πk; 7π/6 + 2πk], k ∈ z x ∈ [7π/6 + 2πp; 11π/6 + 2πp], p ∈ z x ∈ [π/2 + 2πn; 7π/6 + 2πn], n ∈ z x ∈ [3π/2 + 2πk; 11π/6 + 2πk], k ∈ z x ∈ [π/2 + 2πn; 7π/6 + 2πn] ∪ [3π/2 + 2πn; 11π/6 + 2πn), n ∈ z
ответ:
объяснение:
если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
доказывается наложением одного из треугольников на другой. треугольники полностью совместятся, следовательно, по определению они равны.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
dĵdjdkdkdkdkdk13.02.2021 21:50
-
belover28.05.2021 18:22
-
Potashka13.12.2020 03:11
-
Snowandsand36819.11.2022 07:09
-
natalyakulesch03.05.2023 23:49
-
marina051025120.02.2020 00:50
-
котик1158589614.06.2021 12:09
-
АртёмПестов16.06.2023 21:38
-
anast20039729.08.2020 11:48
-
анаркааа5421.04.2023 13:45
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.