Есть ответ 👍

Определите, при каком наибольшем целом k один из корней уравнения 4x^2−(3k+2)x+(k^2−1)=0 в три раза больше другого.

129
158
Посмотреть ответы 2

Ответы на вопрос:

Sem5000
4,8(67 оценок)

D= (3k+2)^2 - 4*4(k^2-1) = 9k^2+12k+4-16k^2+16 = -7k^2+12k+20 > =0 d1 = 12^2 - 4(-7)*20 = 144 + 560 = 704 = (8√11)^2 k1 = (-12 - 8√11)/(-14) = (6 + 4√11)/7 ~ 2,7523 k2 = (-12 + 8√11)/(-14) = (6 - 4√11)/7 ~ -1,038 то есть корни есть только при k ∈ [-1; 2]. проще всего проверить корни при этих k. k = -1: 4x^2 + x = 0; x1 = 0; x2 = -1/4 - не подходит. k = 0: 4x^2 - 2x - 1 = 0; d = 4+16 = 20; x1 = (2-2√5)/8 = (1-√5)/4; x2 = (1+√5)/4 - не подходит k = 1: 4x^2 - 5x = 0; x1 = 0; x2 = 5/4 - не подходит k = 2: 4x^2 - 8x + 3 = 0; d = 64-4*4*3 = 64-48 = 16=4^2; x1 = (8-4)/8 = 1/2; x2 = (8+4)/8 = 3/2 - подходит! ответ: k = 2 но можно решить и в общем виде. изначально d = -7k^2+12k+20 x1 = (3k+2 - √(-7k^2+12k+20)) / 8 x2 = (3k+2 + √(-7k^2+12k+20)) / 8 и по условию x2 = 3*x1 (очевидно, что x2 > x1) 3*(3k+2 - √(-7k^2+12k+20)) = 3k+2 + √(-7k^2+12k+20) 9k+6 - 3√(-7k^2+12k+20)) = 3k+2 + √(-7k^2+12k+20)) 4√(-7k^2+12k+20)) = 6k + 4 2√(-7k^2+12k+20)) = 3k + 2 возводим всё в квадрат 4(-7k^2+12k+20) = (3k+2)^2 -28k^2 + 48k + 80 = 9k^2 + 12k + 4 37k^2 - 36k - 76 = 0 d/4 = 18^2 - 37(-76) = 324 + 2812 = 3136 = 56^2 k1 = (18 - 56)/37 = -38/37 - не подходит, потому что не целое k2 = (18 + 56)/37 = 74/37 = 2 - подходит. ответ: 2
Елис13
4,4(99 оценок)

Надо разделить на 4,ответ будет 36 и 3 остаток

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS