Пусть биссектрисы аа1 и вв1 углов вас и сва треугольника авс пересикаются в точке н, и асв=60градус. доказать что треугольника а1в1н равнобедренный.
221
399
Ответы на вопрос:
Мы касаемся в этой интересного круга , связанных с треугольником, у которого один из углов равен 60°. оказывается, у такого треугольника (хотя в этой это и не потребуется), центр описанной окружности, центр вписанной окружности, ортоцентр (то есть точка пересечения высот), а также две вершины лежат на одной окружности, которая получается из описанной симметрией относительно стороны треугольника. возвращаемся к нашей . вспоминаем формулу, по которой ищется угол между биссектрисами двух углов треугольника. он равен 90°+ половина третьего угла (доказывается это просто, если вы знаете, чему равна сумма углов треугольника, вы с этой справитесь). в нашем случае угол между биссектрисами aa_1 и bb_1 будет равен 90+30=120°. замечаем, что ∠a_1hb_1+∠c=180° ⇒ вокруг четырехугольника ca_1hb_1 можно описать окружность. остается вспомнить, что биссектрисы в треугольнике пересекаются в одной точке ⇒ch делит угол a_1cb_1 пополам, а тогда дуги, на которые опираются эти половинки, равны, а тогда и хорды a_1h и b_1h равны, что и требовалось.
Вычислим какой это многоугольник. n=360°/(180°-a)=360°/(180°-135°)=8 правильный восьмиугольник периметр многоугольника p=8*a=8*3=24 ответ: 24.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
123456789082112.08.2021 09:58
-
KaiBennet21.04.2020 11:44
-
Ольга2505200026.08.2022 02:43
-
stasleraz09.11.2022 15:41
-
GagarinPSK08.11.2021 23:59
-
maksgibert6115.02.2022 07:28
-
11Misha20115.12.2020 16:04
-
gasi2002223.06.2020 19:49
-
Шишкин55514.08.2021 09:17
-
Xidirova0428.12.2021 23:41
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.