Есть ответ 👍

Диагональ равнобедренной трапеции равна 50 см, средняя линия — 48 см. определи расстояние между основаниями трапеции.

296
312
Посмотреть ответы 2

Ответы на вопрос:


Хорошая , заставляющая тряхнуть стариной и вспомнить некоторые трюки, полезные при работе с трапецией. трапеция abcd; ad - большее основание, внизу; bc - меньшее основание, наверху. перенесем диагональ bd на величину верхнего основания. другими словами, через точку с проводим прямую, параллельную bd, до пересечения с продолжением ad в точке e. получился равнобедренный треугольник  ace с боковыми сторонами, равными диагоналям трапеции, то есть ac=ce=50; при этом основание треугольника равно  сумме оснований трапеции, то есть удвоенной средней линии; ae=96. расстояние между основаниями трапеции равно высоте этого треугольника, найдем ее. поскольку высота cf  равнобедренного треугольника ace, опущенная на его основание, является также медианой, можем найти cf из прямоугольного треугольника acf с теоремы пифагора: cf^2=ac^2-af^2=50^2-48^2=4(25^2-24^2)= 4(25-24)(25+24)=4·49=(14)^2⇒cf=14 замечание. многие  наряду с самым известным прямоугольным треугольником с целыми сторонами (египетским: 3-4-5) знают и несколько других, одним из них  является треугольник 7-24-25, стороны которого в 2 раза меньше сторон нашего. заметив это, можно было избежать применение теоремы пифагора (впрочем, не знаю, что сказала бы на этот счет ваша учительница) 

Т. важно определиться с большим большая сторона лежит против большего cos(90) = 0 косинус (угла < 90 градусов)   косинус (угла > 90 градусов) 7^2 = 3^2 + 5^2 - 2*3*5*cosx cosx = (9+25-49) / 30 можно даже не cosx < 0  треугольник

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS