Есть ответ 👍

Втреугольнике mnk с углом m равным 120 градусов проведены биссектрисы mm1,nn1,kk1. докажите, что треугольник m1n1k1 прямоугольный.

249
260
Посмотреть ответы 2

Ответы на вопрос:

dianaknyazeva
4,7(17 оценок)

Эту я решал 100 лет назад, и как тогда, так и сейчас, совсем простого решения не нашел. с разрешения уважаемого автора введу свои обозначения.  δabc,  ∠abc=120°, биссектрисы aa_1, bb_1, cc_1; ab=c, bc=a,ca=b;   ca_1=m, ba_1=n, cb_1=k для решения нам понадобятся следующие факты (подозреваю только, что в начальной школе они не проходятся. но может быть я отстал от жизни : 1. биссектриса в треугольнике делит сторону на отрезки, пропорциональные боковым сторонам. более того, эти отрезки несложно выразить через стороны. так, m=(ab)/(b+c); n=(ac)/(b+c); k=(ba)/(a+c)  (когда-нибудь я научу вас, как писать эти формулы не только  без неприязни, но с улыбкой на устах). 2. обратный факт: если отрезок, соединяющий вершину с какой-то точкой противоположной стороны, делит сторону на отрезки, пропорциональные боковым сторонам, то он является биссектрисой. 3. длина биссектрисы (скажем bb_1) может быть вычислена по формуле                             bb_1=(2cos (b/2)ac)/(a+c). в частности, если угол b равен 120°, эта формула превращается в bb_1=(ac)/(a+c). переходим к непосредственному решению. aa_1 - биссектриса⇒m/n=b/c bb_1=(ac)(a+c) соединим точки b_1 и a_1. докажем, что b_1a_1 - биссектриса угла bb_1c. для этого достаточно доказать, что m/n=k/bb_1. в самом деле, k/bb_1=((ba)/(a+c))/(ac/(a+c))=b/c. но ведь и m/n=b/c! значит, мы доказали, что b_1a_1 - биссектриса угла bb_1c. точно так же получается, что b_1c_1 - биссектриса угла bb_1a. осталось сослаться на то, что биссектрисы смежных углов перпендикулярны. итак, угол a_1b_1c_1 - прямой. замечание. можно доказательство провести совсем по-другому, и намного быстрее. но как показывает мой опыт, самостоятельно  выйти на второй способ намного сложнее, чем на первый. итак, второй способ. продолжим сторону ab за вершину b; поставим где-нибудь там точку d. угол cbd равен 180°-120°=60°⇒bc является биссектрисой угла dbb_1, то есть внешнего угла треугольника abb_1. эта биссектриса пересекается с bc в точке a_1⇒ биссектриса еще одного внешнего угла треугольника abb_1  - угла bb_1c -  проходит через ту же точку a_1. вот мы и доказали требуемое. за то, что напомнили про те времена, когда такие были мне в новинку. надеюсь, что вы получили удовольствие от обоих доказательств. искренне ваш
tural25
4,7(67 оценок)

Сложи 11,3 и 4,9 и получишь растоянение

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS