Есть ответ 👍

Решите тригонометрические уравнения 1) 3cos2x-22sinx-15=0 2) 19sin2x+6cos²x-12=0 3) 9cosx+sinx-1=0

196
351
Посмотреть ответы 2

Ответы на вопрос:

Ozoda5
4,7(19 оценок)

1) cos 2x = 1 - 2sin^2 x 3cos 2x - 22sin x - 15 = 0 3 - 6sin^2 x - 22sin x - 15 = 0 приводим подобные и делим все на -2 3sin^2 x + 11sin x + 6 = 0 получили квадратное уравнение относительно sin x (3sin x + 2)(sin x + 3) = 0 sin x = -2/3; x1 = -arcsin(2/3) + 2pi*k; x2 = pi + arcsin(2/3) + 2pi*k sin x = -1/3; x3 = -arcsin(1/3) + 2pi*n; x4 = pi + arcsin(1/3) + 2pi*n 2) sin 2x = 2sin x*cos x 19sin 2x + 6cos^2 x - 12 = 0 6cos^2 x + 38sin x*cos x - 12sin^2 x - 12cos^2 x = 0 приводим подобные и делим все на -2 6sin^2 x - 19sin x*cos x + 3cos^2 x = 0 делим всё на cos^2 x 6tg^2 x - 19tg x + 3 = 0 получили квадратное уравнение относительно tg x (tg x - 3)(6tg x - 1) = 0 tg x = 3; x1 = arctg(3) + pi*k tg x = 1/6; x = arctg(1/6) + pi*n 3) 9cos x + sin x - 1 = 0 применим те же формулы двойного аргумента, перейдя к (x/2) 9cos^2(x/2) - 9sin^2(x/2) + 2sin(x/2)*cos(x/2) - sin^2(x/2) - cos^2(x/2) = 0 -10sin^2(x/2) + 2sin(x/2)*cos(x/2) + 8cos^2(x/2) = 0 делим всё на -2cos^2(x/2) 5tg^2(x/2) - tg(x/2) - 4 = 0 получили квадратное уравнение относительно tg(x/2) (tg(x/2) - 1)(5tg(x/2) + 4) = 0 tg(x/2) = 1; x/2 = pi/4 + pi*k; x1 = pi/2 + 2pi*k tg(x/2) = -4/5 = -0,8; x/2 = -arctg(0,8) + pi*n; x2 = -2arctg(0,8) + 2pi*n
vilkinakarina
4,7(72 оценок)

ответ: (4х + 1)(4х-1 -(4х+1))

(4Х+1)(4х - 1  -4х - 1)

(4х+1)(-2)

ответ -2(4х+1)

Объяснение: Сначала выносим за скобки общий множитель 4х+1. Потом  раскрываем скобки. Вычисляем до ответа

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS