Ответы на вопрос:
Объяснение:
Уравнение к-ой степени имеет к корней в поле комплексных чисел
cos(π/12)=cos[(π/3)-(π/4)]=cos(π/3)cos(π/4)+sin(π/3)sin(π/4)=
=0,5·(√2/2)+(√3/2)(√2/2)=(√6+√2)/4
sin(π/12)=sin[(π/3)-(π/4)]=sin(π/3)cos(π/4)-cos(π/3)sin(π/4)=
=(√3/2)(√2/2)-0,5·(√2/2)=(√6-√2)/4
x⁶+3i=0
x⁶=-3i=3(cos(-π/2)+isin(-π/2))
x₀= (cos(-π/12)+isin(-π/12))= (cos(π/12)-isin(π/12))=
=((√6+√2)/4-i(√6-√2)/4)=((√6+√2)-i(√6-√2))/4
x₁= (cos((-π+2π)/12)+isin((-π+2π)/12))= (cos((π)/12)+isin((π)/12))=
((√6+√2)+i(√6-√2))/4
x₂= (cos((-π+4π)/12)+isin((-π+4π)/12))= (cos((3π)/12)+isin((3π)/12))=
= (cos((π)/4)+isin((π)/4))= (√2/2+i√2/2)= √2(1+i)/2
x₃= (cos((-π+6π)/12)+isin((-π+6π)/12))= (cos((5π)/12)+isin((5π)/12))=
= (sin((π)/12)+icos((π)/12))= ((√6-√2)/4+i(√6+√2)/4)=
=((√6-√2)+i(√6+√2))/4
x₄= (cos((-π+8π)/12)+isin((-π+8π)/12))= (cos((7π)/12)+isin((7π)/12))=
= (-sin((π)/12)+icos((π)/12))= (-(√6-√2)/4+i(√6+√2)/4)=
=((√2-√6)+i(√6+√2))/4
x₅= (cos((-π+10π)/12)+isin((-π+10π)/12))= (cos((3π)/4)+isin((3π)/4))=
= (-cos((π)/4)+isin((π)/4))= (-√2/2+i√2/2)= √2(-1+i)/2
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
KatyLala29.06.2021 13:23
-
ananas210619.04.2020 00:45
-
saksharovsasha20.12.2020 07:41
-
kristpan2004p0c22v11.07.2020 21:13
-
vikacat1234530.10.2022 01:25
-
Alevtinka2811.11.2020 11:33
-
Hicoleta06.03.2023 15:45
-
Осень2510.04.2023 13:42
-
elka124502.07.2022 03:47
-
marina558zas25.04.2021 06:19
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.