Ответы на вопрос:
куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. частный случай параллелепипеда и призмы.
свойства куба
четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.
в куб можно вписать тетраэдр двумя способами. в обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. в первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. такой тетраэдр является правильным, а его объём составляет 1/3 от объёма куба.
в куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра. в куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. все двенадцать вершин икосаэдра будут лежать на шести гранях куба.
правильный тетраэдр
тетраэдр — простейший многогранник, гранями которого являются четыре треугольника. у тетраэдра 4 грани, 4 вершины и 6 рёбер.
свойства тетраэдра
параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.
все медианы тетраэдра пересекаются в одной точке, которая делит их в отношении 3: 1, считая от вершины (теорема коммандино). в этой же точке пересекаются и бимедианы тетраэдра, которые делятся ею пополам.
плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра, делит его на две равные по объёму части.
тетраэдры в живой природе
тетраэдр из грецких орехов
некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. поэтому похожие на шар плоды образуют подобное взаимное расположение. например, таким образом могут располагаться грецкие орехи.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
trollotrollovit02.11.2020 08:22
-
vovaonuchko05.10.2020 11:03
-
ftsvftsvftsv1904.11.2020 11:47
-
нурик28312.08.2020 06:44
-
Isa2222223.02.2020 01:43
-
Тима7771118.01.2020 04:32
-
лариса21914.03.2021 04:10
-
natakhafedotovp06k9x28.02.2020 09:01
-
bauka07731.05.2023 05:11
-
Nellity01.08.2021 20:35
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.