Есть ответ 👍

Докажите ,что в любом шестидесяти цифровом числе, запись которого не содержит нулей, можно зачеркнуть несколько цифр так, что полученное число будет делится на 1001. !

166
232
Посмотреть ответы 2

Ответы на вопрос:

paveldol2007
4,5(84 оценок)

Любое шестицифровое число , не содержащее в записи 0 можно превратить в шестицифровое число с одинаковыми цифрами (111 111, либо 222 222, либо 999 999) если предположить что ни одна из уникальных 9-ти возможных цифр не повторится больше 5 раз, то мы можем составить число не более чем 9*5=45 -ти цифровое, а значит хотя бы одна цифра точно будет в записи числа повторятся шесть и более раз итого, берем  выбираем любую цифру которая встречается шесть или более раз, зачеркиваем остальные цифры и повторы выбранной цифры, чтоб осталось ровно 6 вхождений выбранной цифры. доказано
pya98
4,4(63 оценок)

10+10+10+10+10+10+10+10+10-8-8-8-8-8-8 8 - 6 неправильных ответов

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS