При каких значениях a, функция: f(x) = x^2 - 3 | x - a^2 | - 7x имеет хотя бы одну точку максимума? если можно, то с графиками!
Ответы на вопрос:
у меня без графиков. и вообще не знаю, верно ли.
ну сначала рассматриваем два случая раскрытия модуля:
1) при x > = a^2
f(x) = x^2 - 10x + 3a^2
находим производную:
f'(x) = 2x - 10
точка экстремума:
2x - 10 = 0
x = 5
2) при x < a^2
f(x) = x^2 - 4x - 3a^2
f'(x) = 2x - 4
2x - 4 = 0
x = 2
при подстановке точек экстремума в функцию получим:
f(2) = -10 -3|2 - a^2|
f(5) = -10 -3|5 - a^2|
то есть, нам нужно, чтобы модули не были равны, в этом случае будет одна точка максимума и одна точка минимума.
при a^2 < = 2
2 - a^2 < > 5 - a^2
2 < > 5
верно при любых значениях а, то есть, подходит любое значение из промежутка
-sqrt(2) < = a < = sqrt(2)
при 2 < a^2 < = 5
2 - a^2 < > -(5 - a^2)
2a^2 < > 7
a < > sqrt(7/2)
то есть, подходят значения из промежутков
-sqrt(5) < = a < -sqrt(7/2),
-sqrt(7/2) < a < -sqrt(2),
-sqrt(2) < a < sqrt(2),
sqrt(2) < a < sqrt(7/2) и
sqrt(7/2) < a < = sqrt(5).
при a^2 > 5
2 - a^2 < > 5 - a^2
2 < > 5
верно для любых значений а из промежутков a < -sqrt(5) и a > sqrt(5)
то есть, для того, чтобы существовала хотя бы одна точка максимума, нам подходят значения а, принадлежащие промежуткам: (-беск; -sqrt(7/2)) u (-sqrt(7/2); sqrt(7/2)) u (sqrt(7/2); +беск).
(sqrt(x) - корень квадратный из х).
как-то так, наверно.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
helen1511198329.06.2020 09:33
-
kettyperry1617.07.2021 18:55
-
helppls722.05.2020 12:21
-
Karina2505200506.02.2020 07:39
-
sbornyakovap08xiv16.05.2020 16:09
-
mashyanova23.04.2021 04:41
-
Lehanbratkov13.06.2023 11:14
-
Roman232104.02.2023 13:57
-
naoimiiwsvb224.01.2021 02:28
-
Ymnushca13.02.2023 12:04
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.