Есть ответ 👍

Найдите периметр прямоугольника, если одна сторона равна 13 см, а другая: 1) на 3 см меньше 2) на 1 см больше 3) в 2 раза больше 4) в 5 раз меньше

143
340
Посмотреть ответы 3

Ответы на вопрос:

hilton1
4,4(7 оценок)

1) p=13см+13см+10см+10см=46см 2)p=13см+13см+14см+14см=54см 3)p=13см+13см+15см+15см=56см 4)p=13см+13см+8см+8см=42см
nadiakrasavtze
4,4(49 оценок)

1) 13-3=10см.-вторая сторона (13+10)•2=46 см 2)13+1=14см-вторая сторона (13+14)•2=54 см 3)13•2=26 см (13+26)•2=78см 4)13: 5=2,6 см (13+2,6)•2=31,2 см

ответ: 4) 288.

Решение.

Пусть ABC - треугольник, и угол B - ппрямой.

Пусть BК - высота, проведенная из вершины прямого угла B,

BМ - бисектриса, проведенная из угла B, при этом на стороне АС.

BК = 6, ВМ = 8.

точки находятся в таком порядке: A, К, М, C.

Начертите такой треугольник, чтобы было понятнее.

Угол АВМ = угол МВС = 45 гр = pi/4.

Обозначим угол КВМ = alfa.

cos(alfa) = ВК/ВМ = 6/8 = 3/4.

sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .

В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.

АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).

В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.

ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).

Площадь треугольника АВС:

S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).

cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4

cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4

Поэтоиу

S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.

Объяснение:

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS