Есть ответ 👍

Втреугольнике abc угол c равен 75° , а угол b равен 60°. вершина m равнобедренного прямоугольного треугольника bcm с гиптенузой bc расположена внутри треугольника abc.найдите угол mac.

136
482
Посмотреть ответы 2

Ответы на вопрос:


Угол baс = 45 гр. проведём окружность с центром м и радиусов мв=мс. т.к. угол вмс = 90 гр, то большая дуга вс этой окружности является местом точек, из которых хорда вс видна под углом 45 гр. следовательно, вершина а принадлежит этой окружности. значит треугольник амс - равнобедренный, и следовательно угол мас= углу мса= углу вса - (минус) угол мсв = 75 гр- 45 гр = 30 гр.
05Adam05
4,8(5 оценок)

ответ:

\angle E=105^{\circ}

Объяснение:

Проведём биссектрисы \angle B и \angle C. Пусть они пересекаются в точке O.

Также проведём прямые EO, \: OD и AO.

========================================

Рассмотрим \triangle BOC :

\angle BOC = 140^{\circ}:2=70^{\circ}, т.к. BO - биссектриса.

\angle OCB=110^{\circ}:2=55^{\circ}, т.к. CO - биссектриса.

Сумма внутренних углов треугольника равна 180^{\circ}.

\Rightarrow \angle BOC=180^{\circ}-(70^{\circ}+55^{\circ})=180^{\circ}-125^{\circ}=55^{\circ}

\Rightarrow \triangle BOC - равнобедренный.

========================================

Рассмотрим \triangle BOA и \triangle BOC :

\angle ABO=\angle CBO, т.к. BO - биссектриса;

AB=CB (по условию); OB - общая сторона.

\Rightarrow \triangle BOA=\triangle BOC (по I признаку равенства треугольников).

========================================

Рассмотрим \triangle BOC и \triangle DOC :

\angle BCO=\angle DCO, т.к. CO - биссектриса;

BC=CD (по условию), CO - общая сторона.

\Rightarrow \triangle BOC=\triangle DOC (по I признаку равенства треугольников).

========================================

\Rightarrow \triangle BOA=\triangle DOC, т.е. мы имеем три равных равнобедренных тр-ка:

\boxed{\triangle BOA, \: \triangle DOC,\: \triangle BOC}

========================================

Рассмотрим \triangle EDO :

\angle EDO=130^{\circ}-\angle ODC=130^{\circ}-70^{\circ}=60^{\circ}.

\Rightarrow \triangle EDO - равносторонний \Rightarrow FA=EO

========================================

Рассмотрим геометрическую фигуру AFEO :

\angle FAO=100^{\circ}-\angle OAB=100^{\circ}-55^{\circ}=45^{\circ}.

\angle AOE=360^{\circ}-(55^{\circ}+55^{\circ}+55^{\circ}+60^{\circ})=135^{\circ} (т.к. в полном угле всего 360°)

При пересечении двух параллельных прямых секущей, сумма односторонних углов равна 180^{\circ}.

\angle FAO+\angle EOA=180^{\circ} \Rightarrow FA|| EO

Если у геометрической фигуры есть 4 угла, 4 стороны, а 2 стороны равны и параллельны, то этот четырёхугольник - параллелограмм.

У параллелограмма противоположные углы равны.

\Rightarrow \angle FAO=\angle FEO=45^{\circ}.

\Rightarrow \angleDEF =\angle FEO+\angle DEO=45^{\circ}+60^{\circ}=105^{\circ}

========================================


В шестиугольнике ABCDEF выполнены равенства FA=AB=BC=CD=DE, ∠A=100∘, ∠B=140∘, ∠C=110∘, ∠D=130∘. Найд

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS