Основание ac равнобедренного треугольника abc равно 12. окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания ac в его середине. найдите радиус окружности, вписанной в треугольник abc.
191
457
Ответы на вопрос:
Центр вписанной в угол окружности лежит на его биссектрисе. окружность радиуса 8 - вневписанная, касается сторон двух углов - а и с, ее центр лежит на пересечении биссектрис этих углов, смежных с углами а и с ∆ авс соответственно,⇒ со - биссектриса и делит угол нск пополам. . центр окружности, вписанной в треугольник авс, лежит в точке пересечения биссектрис. вн и со₁ - биссектрисы. со₁ делит угол всн пополам. аск - развернутый угол и равен 180º сумма половин углов асн и осн равна половине развернутого угла. угол осо₁=180° : 2=90°⇒ ∆ осо₁ - прямоугольный с прямым углом с. ан - высота и медиана равнобедренного треугольника авс, следовательно, делит основание ас на два равных отрезка: сн=ан=6. сн ⊥ ан⇒ является высотой треугольника осо₁.
высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой; ⇒
сн²=он•ho₁
36=8 ho₁
ho₁=36/8=4,5 (ед. длины)
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
сегго11.04.2020 04:58
-
Настя52885827.08.2021 04:33
-
хХхмхХх31.07.2020 21:56
-
таллвовоч07.09.2020 20:10
-
SerStroka02.01.2023 02:35
-
NastiLife07.12.2022 20:16
-
Harley29Davidson26.09.2022 14:43
-
arsenkina200427.11.2021 21:32
-
fvrvdv23.10.2021 03:40
-
itrufanova201611.05.2023 20:57
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.