Доказать что (5^5x+1)+(4^5x+2)+(3^5x) делится на 11,при любом целом,положительном x (^ значит в степени)
183
437
Ответы на вопрос:
Попробуем доказать по индукции. 5^(5x+1) + 4^(5x+2) + 3^(5x) = 5*5^(5x) + 16*4^(5x) + 3^(5x) при x = 0 будет 5*5^0 + 16*5^0 + 3^0 = 5 + 16 + 1 = 22 = 2*11 - делится на 11. пусть при каком-то x это верно, докажем, что это верно и при x+1 5^(5x+5+1) + 4^(5x+5+2) + 3^(5x+5) = 5^(5x+6) + 4^(5x+7) + 3^(5x+5) = = 5^6*5^(5x) + 4^7*4^(5x) + 3^5*3^(5x) = 15625*5^(5x) + 16384*4^(5x) + 243*3^(5x) вычтем из него нашу сумму 5*5^(5x) + 16*4^(5x) + 3^(5x), которая делится на 11, и проверим, делится ли на 11 разность. 15625*5^(5x) + 16384*4^(5x) + 243*3^(5x) - 5*5^(5x) - 16*4^(5x) - 3^(5x) = = 15620*5^(5x) + 16368*4^(5x) + 242*3^(5x) = = 11*1420*5^(5x) + 11*1488*4^(5x) + 11*22*3^(5x) все три коэффициента делятся на 11, значит, и разность делится на 11, и следующий член последовательности 5^(5x+6) + 4^(5x+7) + 3^(5x+5) делится на 11.
108)
Пошаговое объяснение:
ответ такой)
Но я незнаю или ты правильно написать задание)
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
Baby1FNAF12.01.2021 02:48
-
Светланка19307.11.2021 10:12
-
сойдет225.06.2022 09:34
-
Ipgt17.05.2022 21:39
-
nikfyodorov2029.10.2020 03:29
-
тимур62306.05.2021 13:26
-
yanasyperyanaco28.12.2022 04:05
-
cat49716.08.2022 10:44
-
lera104216.06.2023 15:09
-
656181329.02.2020 11:51
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.