Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечетные. пусть a — сумма сумм цифр чисел в первой группе, b — во второй. найдите b−a.
173
424
Ответы на вопрос:
Дано: 1, 2, 1000 - ряд натуральных чисел от 1 до 1000 2, 4, 6, 1000 - ряд чётных чисел. сумма данного ряда равна а. 1, 3, 5, 999 - ряд нечётных чисел. сумма данного ряда равна b. найти: b-a решение: а=2+4+6++1000 сумму данного ряда найдём с формулы суммы арифметической прогрессии. а₁=2, а₂=4 => d=a₂-a₁=4-2=2 a(n)=1000 n-? a(n)=a₁+d(n-1) 2+2(n-1)=1000 2(n-1)=998 n-1=499 n=500 s(n)=s(500)=(a₁+a₅₀₀)*500/2=(2+1000)*250=250500 следовательно, а=250500 аналогично, находим b - сумму ряда нечётных чисел: b=1+3+5++999 b₁=1, b₂=3 => d=b₂-b₁=2 b(n)=999 n-? b(n)=b₁+d(n-1) 1+2(n-1)=999 2(n-1)=998 n-1=499 n=500 s(n)=s(₅₀₀)=(b₁+b₅₀₀)*500/2=(1+999)*250=250000 следовательно, b=250000 b-a=250000-250500=-500 ответ: -500
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
ada979706.02.2022 21:51
-
polina1712200211.07.2022 04:10
-
raitilianna20.04.2020 05:05
-
DashaVologina120.11.2022 05:14
-
veta99108.08.2021 21:48
-
Vbeker06.04.2023 13:15
-
kristinalobanova628.11.2022 20:32
-
АЛИСАпЕЧЕНЬка78705.03.2022 11:04
-
Элиза551130.06.2023 07:40
-
нпапоащвщц25.07.2020 03:54
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.