Есть ответ 👍

Решите уравнения: |3x-9|-|x+2|=7 |2x-8|-|x+1|=-2

174
296
Посмотреть ответы 2

Ответы на вопрос:

1mironov1
4,5(79 оценок)

На примере первого уравнения объясню, как решать методом интервалов. |3x-9|-|x+2|=7 в уравнении два модуля: |3x-9| и |x+2|. чтобы избавиться от них, следует изучить знаки подмодульных выражений: 3x-9 и x+2. каждое из них обращается в нуль при х=3 и х=-2 соответственно.отметим эти числа на числовой оси: числовая прямая разделена на три интервала двумя точками х=-2 и х=3. являются ли эти два числа корнями данного уравнения, можно проверить подстановкой. нет, не являются. искомые корни могут находиться на одном из интервалов: x< -2; -2< x< 3; x> 3. рассмотрим подробно уравнение на каждом из этих интервалов. 1) на интервале x< -2 имеем: |3x-9| =-(3x-9), т.к. при x< -2 разность 3x-9< 0; |x+2|=-(x+2), т.к. при x< -2 сумма x+2< 0. в результате этого анализа получим уравнение без модулей, но с условием x< -2. запишем это условие в виде системы и решим её: {x< -2 {-3x+9+x+2=7; -2x+11=7; -2x=-4; x=2( 2 не входит в указанный интервал) система не имеет решений. 2) на интервале -2< x< 3 имеем: |3x-9|=-(3x-9), т.к. при -2< x< 3 разность 3x-9< 0; |x+2|=x+2,т.к. при -2< x< 3 сумма x+2> 0. запишем систему и решим её: {-2< x< 3 {-3x+9-x-2=7; -4x+7=7; -4x=0; x=0( ноль входит в заданный интервал) один корень найден. часть ответа получена. 3) на интервале x> 3 имеем: |3x-9|=3x-9, т.к. при x> 3 разность 3x-9> 0; |x+2|=x+2, т.к. при x> 3 сумма x+2> 0.запишем систему и решим её: {x> 3 {3x-9-x-2=7; 2x-11=7; 2x=18; x=9 ( входит в промежуток x> 3). ответ: 0; 9
Мира1356
4,5(24 оценок)

x+y=25

3x-2y=15

x=25-y

3(25-y) - 2y=15

75-3y-2y=15

-5y=15-75

5y=60

y=12

x=25-12=13

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS