Есть ответ 👍

Докажите признак параллельности прямых

282
407
Посмотреть ответы 2

Ответы на вопрос:

annaerkina
4,5(65 оценок)

Теорема 1. если при пересечении двух прямых секущей: накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые параллельны доказательство. ограничимся доказательством случая 1. пусть при пересечении прямых а и b секущей ав накрест лежащие углы равны. например, ∠ 4 = ∠ 6. докажем, что а || b. предположим, что прямые а и b не параллельны. тогда они пересекаются в некоторой точке м и, следовательно, один из углов 4 или 6 будет внешним углом треугольника авм. пусть для определенности ∠ 4 — внешний угол треугольника авм, а ∠ 6 — внутренний. из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.
urokiiiii
4,7(27 оценок)

ответ:

x > - 3 или х ∈ ( - 3; + ∞ ) - область определения этой логарифмической функции.

пошаговое объяснение:

логарифмируемое выражение должно быть положительным - это и есть область определения логарифмической функции

х + 3 > 0

x > - 3 или х ∈ ( - 3; + ∞ ) - область определения этой логарифмической функции.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS