Есть ответ 👍

Составь буквенное выражение , числовое выражение и уравнение

268
477
Посмотреть ответы 2

Ответы на вопрос:

nat17akan
4,6(67 оценок)

Числовое выражение: (23+7)-5 буквенное выражение: 35*y уравнение: x^2+3x-18=0

Для знаходження кута між висотою конуса і його твірною нам знадобиться використати теорему Піфагора.

Площа бічної поверхні конуса обчислюється за формулою: S = πrl, де r - радіус основи конуса, l - твірна конуса.

Ми знаємо, що площа бічної поверхні дорівнює 6√3 см^2.

6√3 = πrl

Також нам відомо, що висота конуса дорівнює √3 см.

Застосуємо теорему Піфагора для знаходження радіусу r:

r^2 + (√3)^2 = l^2

r^2 + 3 = l^2

Підставимо значення l^2 з другого рівняння в перше:

6√3 = πr√(r^2 + 3)

Після спрощення ми отримаємо:

36π^2(r^2 + 3) = 108r^2

36π^2r^2 + 108π^2 = 108r^2

(36π^2 - 108)r^2 = -108π^2

r^2 = (108π^2) / (108 - 36π^2)

r^2 = π^2 / (1 - π^2/3)

r^2 = π^2 / (3 - π^2)

r = √(π^2 / (3 - π^2))

Тепер, знаючи радіус r і висоту h, можемо знайти твірну l за до теореми Піфагора:

l^2 = r^2 + h^2

l^2 = (√(π^2 / (3 - π^2)))^2 + (√3)^2

l^2 = π^2 / (3 - π^2) + 3

l^2 = (π^2 + 3(3 - π^2)) / (3 - π^2)

l^2 = (9 - 2π^2) / (3 - π^2)

Тепер ми можемо знайти тангенс кута α між висотою і твірною конуса:

tan(α) = h / l

tan(α) = √3 / √((9 - 2π^2) / (3 - π^2))

tan(α) = (√3 * √(3 - π^2)) / √(9 - 2π^2)

Отже, кут між висотою конуса і його твірною дорівнює:

α = arctan((√3 * √(3 - π^2)) / √(9 - 2π^2)

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS