Докажите, что биссектрисы углов при основании равнобедренного треугольника равны
269
277
Ответы на вопрос:
Вравнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. доказательство: пусть abc - равнобедренный треугольник (ac = bc), ak и bl - его биссектрисы. треугольники akb и alb равны по второму признаку равенства треугольников. у них сторона ab общая, углы lab и kba равны как углы при основании равнобедренного треугольника, а углы lba и kab равны как половины углов при основании равнобедренного треугольника. так как треугольники равны, их стороны ak и lb - биссектрисы треугольника abc - равны. теорема доказана. теорема d3. в равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. доказательство: пусть abc - равнобедренный треугольник (ac = bc), ak и bl - его высоты. тогда углы abl и kab равны, так как углы alb и akb прямые, а углы lab и abk равны как углы при основании равнобедренного треугольника. следовательно, треугольники alb и akb равны по второму признаку равенства треугольников: у них общая сторона ab, углы kab и lba равны по вышесказанному, а углы lab и kba равны как углы при основании равнобедренного треугольника. если треугольники равны, их стороны ak и bl тоже равны. что и требовалось доказать.
Надо всего лишь построить прямую cd, скрещивающуюся с ab. эти две прямые не лежат в одной плоскости. как построить скрещивающуюся прямую - сам догадайся. намекаю - две параллельных плоскости.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
ksuynya200723.06.2023 16:45
-
nuriksabirjan26.08.2020 02:12
-
liona67601.03.2023 16:42
-
Jamal2024.05.2021 08:50
-
KAngelAleksandrovna02.08.2020 20:11
-
Загадака02.05.2020 04:34
-
pmalino10.05.2021 23:46
-
125VikA12528.02.2021 10:48
-
Kseniya111111112029.06.2023 01:20
-
katerinamorozo224.08.2022 06:24
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.