Есть ответ 👍

Дан куб авсда1в1с1д1.а) докажите, что прямая вд1 перпендикулярна плоскости асв1. б) найдите угол между плоскостями ад1с1 и а1д1с

136
148
Посмотреть ответы 2

Ответы на вопрос:

natochka2001
4,4(25 оценок)

Ладно, это одна из "любимых" тем - тетраэдр, вписанный в куб. я напишу решение, но вам придется разбираться и оформлять самостоятельно. а)       фигура acb1b - правильная треугольная пирамида. в основании её равносторонний треугольник acb1: ac = ab1 = cb1 (диагонали граней куба), и боковые ребра равны между собой ba = bc = bb1; (это просто стороны куба). это означает, что точка b проектируется на плоскость acb1 в центр треугольника acb1 - точку o. (ну, у равностороннего треугольника все центры , можете выбирать, какой именно центр, но по логике это центр описанной окружности). то есть, bo перпендикулярно плоскости acb1.         фигура acb1d1 - тоже правильная треугольная пирамида, причем у неё равны между собой все ребра (все ребра этой пирамиды - диагонали граней куба). поэтому d1o перпендикулярно плоскости acb1; (аналогично предыдущему абзацу).       поскольку через точку o можно провести только один перпендикуляр к плоскости acb1, точки b, o, d1 лежат на одной прямой, перпендикулярной плоскости acb1, что и требовалось доказать. б) легко видеть, что прямая c1d перпендикулярна плоскости a1d1c (в этой плоскости еще и точка b лежит), потому что c1d перпендикулярна d1c и a1d1 (a1d1 перпендикулярная грани cc1d1d). точно также прямая a1d перпендикулярная плоскости ad1c1 (тоже, кстати, проходящей через точку b). поэтому (внимание! это - решение! ) угол между плоскостями равен углу между прямыми  a1d и c1d. поскольку треугольник a1dc1 - равносторонний, искомый угол равен 60°

1)ав=  √(5+3)2+(-1+1)2=  √25 = 5     , 2)вс=  √(1-1)2+ (-4-2)2=  √25= 5 , 3)сd=  √(1-5)2+  (-4+1)2=√25 = 5 , 4)аd =  √( 1+3)2+ ( -4+1)2=√25=5   ав=вс=сd=аd, авсd- ромб.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS