Ответы на вопрос:
Лекция 15. Основные величины, изучаемые в начальной школе
1. Понятие величины.
2. Длина.
3. Масса и емкость.
4. Площадь.
5. Время.
6. Скорость.
7. Действия с именованными числами.
Понятие величины
В математике под величиной понимают такие свойства предметов, которые поддаются количественной оценке. Количественная оценка величины называется измерением. Процесс измерения предполагает сравнение данной величины с некоторой мерой, принятой за единицу при измерении величин этого рода.
К величинам относят длину, массу, время, емкость (объем), площадь и др.
Все эти величины и единицы их измерения изучаются в начальной школе. Результатом процесса измерения величины является определенное численное значение, показывающее — сколько раз выбранная мера «уложилась» в измеряемую величину.
В начальной школе рассматриваются только такие величины, результат измерения которых выражается целым положительным числом (натуральным числом). В связи с этим, процесс знакомства ребенка с величинами и их мерами рассматривается в методике как расширения представлений ребенка о роли и возможностях натуральных чисел. В процессе измерения различных величин ребенок упражняется не только в действиях измерения, но и получает новое представление о неизвестной ему ранее роли натурального числа. Число — это мера величины, и сама идея числа была в большой мере порождена необходимостью количественной оценки процесса измерения величин.
При знакомстве с величинами можно выделить некоторые общие этапы, характеризующиеся общностью предметных действий ребенка, направленных на освоение понятия «величина».
На 1-ом этапе выделяются и распознаются свойства и качества предметов, поддающихся сравнению.
Сравнивать без измерения можно длины (на глаз, приложением и наложением), массы (прикидкой на руке), емкости (на глаз), площади (на глаз и наложением), время (ориентируясь на субъективное ощущение длительности или какие-то внешние признаки этого процесса: времена года различаются по сезонным признакам в природе, время суток — по движению солнца и т. п.).
На этом этапе важно подвести ребенка к пониманию того, что есть качества предметов субъективные (кислое — сладкое) или объективные, но не позволяющие провести точную оценку (оттенки цвета), а есть качества, которые позволяют провести точную оценку разницы (на сколько больше — меньше).
На 2-ом этапе для сравнения величин используется промежуточная мерка. Данный этап очень важен для формирования представления о самой идее измерения посредством промежуточных мер. Мера может быть произвольно выбрана ребенком из окружающей действительности для емкости — стакан, для длины — кусочек шнурка, для площади - тетрадь и т. п. (Удава можно измерять и в Мартышках, и в Попугаях.)
До изобретения общепринятой системы мер человечество активно пользовалось естественными мерами — шаг, ладонь, локоть и т. п. От естественных мер измерения произошли дюйм, фут, аршин, сажень, пуд и т. д. Полезно побуждать ребенка пройти этот этап истории развития измерений, используя естественные меры своего тела как промежуточные.
Только после этого можно переходить к знакомству с общепринятыми стандартными мерами и измерительными приборами (линейка, весы, палетка и т. д.). Это будет уже 3-й этап работы над знакомством с величинами.
Знакомство со стандартными мерами величин в школе связывают с этапами изучения нумерации, поскольку большинство стандартных мер ориентировано на десятичную систему счисления: 1 м = 100 см, 1 кг = 1000 г и т. п. Таким образом, деятельность измерения в школе очень быстро сменяется деятельностью преобразования численных значений результатов измерения. Школьник практически не занимается непосредственно измерениями и работой с величинами, он выполняет арифметические действия с заданными ему условиями задания или задачи численными значениями величин (складывает, вычитает, умножает, делит), а также занимается так называемым переводом значений величины, выраженной в одних наименованиях, в другие (переводит метры в сантиметры, тонны в центнеры и т. п.). Такая деятельность фактически формализует процесс работы с величинами на уровне численных преобразований. Для успешности этой деятельности нужно хорошо знать наизусть все таблицы соотношений величин и хорошо владеть приемами вычислений. Для многих школьников эта тема является трудной только по причине необходимости знать наизусть большие объемы численных соотношений мер величин.
Пошаговое объяснение:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
sasha3342726.04.2021 14:00
-
sasha186014.10.2020 04:55
-
Posrednikova0419.12.2022 19:24
-
Жанна64425.03.2023 00:05
-
llleeennn21.01.2022 10:01
-
linagalkinaa09.02.2020 12:06
-
Regisha198130.07.2020 22:24
-
vanikkuz18.04.2020 23:34
-
Predator12376503.07.2022 12:22
-
niki1232018ovv1ej09.02.2023 14:23
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.