Какие архитектурные памятники напоминают о пышном, причудливом барокко? в спб.
289
500
Ответы на вопрос:
Доказательство проводится в 3 шага. 1 пример. 1шаг- проверяем при n=1: 0^1=0 -верно; 2шаг- предполагаем, что исходное (т.е. 0^n=0) верно при n=k, k€n: 0^k=0 -верное 3 шаг- доказываем, что равенство верно и при n=k+1: 0^(k+1)=0^k•0^1=0•0=0 - первый сомножитель верный 0 согласно п.2, второй согласно п.1, значит 0^n=0 верно для любого натурального n, ч.т.д. 2 пример. 1) при n=1 a^1< b^1, а< b -выполняется; 2) полагаем, что при n=k a^k< b^k тоже выполняется 3) проверяем при n=k+1: a^(k+1)< b^(k+1), a^k•a^1< b^k•b^1, а^k•а< b^k•b согласно свойству неравенства одинаковых знаков с положительными членами можно почленно умножать и делить, следовательно, полученное неравенство верное для n=k+1, значит и для любого n. ч.т.д. 3 пример 1) n=1, a^1•b^1=a•b=(ab)^1 верно; 2) полагаем, что при n=k a^k•b^k=(ab)^k -верное; 3) проверяем при n=k+1, используя свойства показателей: a^(k+1)•b^(k+1)= a^k•a^1•b^k•b^1= (ab)^k•(ab)^1 сомножители верны согласно п.2 и п.1, значит для любого натурального n a^n•b^n=(ab)^n, ч.т.д.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
Alyona124703.07.2020 12:43
-
ДианаBerts01.06.2022 03:10
-
zeynalova7926.05.2023 10:26
-
Nasteckay31.10.2020 10:10
-
0481219.06.2020 22:00
-
Grazhdankin17.08.2020 19:15
-
Ser099gei07.03.2022 18:25
-
OМайгад22.09.2022 12:30
-
AbashkinaEvgenia9818.11.2022 11:25
-
megachiglakov01.11.2022 06:54
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.