При каких значениях параметра "a" уравнение x⁴-8x²+7=a имеет два корня? (графически знаю как, нужно ). ответ: при a=7 и a< -9.
180
299
Ответы на вопрос:
Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение где под подразумевается квадрат переменной т.е. а его корнями – квадраты искомых корней, если они различны, или его чётным корнем если корень биквадратного трёхчлена – единственный. наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле тогда потребуем, чтобы откуда следует, что уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при а корень биквадратного трёхчлена станет чётным давая два искомых корня это значение как раз уже и есть одно из искомых решений для параметра когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. среднеарифметическое квадратов искомых корней по теореме виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно отсюда следует, что правый квадрат искомых корней – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте. левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки а значит, значение всего трёхчлена взятое от должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена. отсюда: ; ; ; о т в е т :
Пусть t часов - время, когда произойдет встреча. первый пройдет (5,1·t) км, второй пройдет (3·t) км. первый пройдет mo +ob второй пройдет мв всего 2,7·2=5,4 км. (место отправления) о(опушка) о уравнение 5,1·t+3·t=5,4 8,1·t=5,4 t=2/3 часа пусть от места отправления (m) до места встречи (b) равен 3·(2/3)=2 км. о т в е т. на расстоянии 2 км от точки отправления произойдет их встреча
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
ваня135819.02.2020 12:57
-
Marvarick08.12.2020 06:45
-
Khayalnuriev200502.12.2021 23:35
-
Gagarin5116.06.2022 22:42
-
dima1123222.05.2020 07:33
-
али555310.01.2020 05:55
-
Вова337134624.02.2020 20:01
-
dinok315.03.2023 18:21
-
AiratAitov05.05.2022 08:20
-
kerillponomarenco31.05.2020 01:36
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.