Есть ответ 👍

Найдите угловой коэффициент касательной к графику функции в точке x0= 0, если y = (x + 2)^2/3 ∙ x

278
487
Посмотреть ответы 2

Ответы на вопрос:


угловой коэффициент касательной равен значению производной в точке касания. найдем производную функции как производную произведения.

y' =((x+2)^2/3 * x)' = ((x+2)^2/3)'*x + (x+2)^2/3 * x' =

2/3 *(x+2)^(-1/3) *x +(x+2)^2/3.

x=0. k=y'(0) = 2/3 * 2^(-1/3) +2^2/3        = 2/3*(1/∛2) +∛4 = 2/(3∛2) +∛4 =8/(3∛2)

  такой ответ получится , когда к общему знаменателю 3∛2. должно быть верно.


Вот так

1+2+3-4+5-6+7+8-9=7

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS