Ответы на вопрос:
Объяснение:
а) найдём величину вектора по формуле:
АВ=√((Ах-Вх)²+(Ау-Ву)²+(Аz-Bz)²=
=√((4-2)²+(0-5)²+(1-0)²)=√(2²+(-5)²+1²=
=√(4+25+1)=√30
AB=√30
Теперь найдём величину вектора АС по этой же формуле:
АС=((4-5)²+ (0-1)²+(1-3)²)=√((-1)²+(-1)²+(-2)²)=
=√(1+1+4)=√6
АС=√6
б) сначала найдём координаты вектора АВ по формуле:
АВ=(Вх-Ах; Ву-Ау; Вz-Az)=
=(2-4; 5-0; 0-1)=(-2; 5; -1)
AB(-2; 5; -1)
AC(5-4; 1-0; 3-1)=(1; 1; 2)
AC(1; 1; 2)
Теперь найдём их скалярное произведение по формуле:
АВ×АС=АВх×АСх+АВу×АСу+АВz×ACz=
-2×1+5×1+(-1)×2= -2+5-2=5-4=1
ОТВЕТ: 1
в) найдём угол между векторами по формуле:
(АВ×АС)/√((АВх²+АВу²+АВz²)(ACx²+ACy²+ACz²))= так как скалярное произведение мы наши в пункте "б", то мы запишем его значение сразу:
1/√((-2)²+5²+(-1)²)×(1²+1²+2²)=
=1/√((4+25+1)(1+1+2))=1/√(30×6)=1/√180=1/3√20
Мы нашли изначально длины векторов в пункте "а", АВ=√30; АС=√6, поэтому тоже можно их перемножить согласно этой формуле
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
alii33303.03.2022 23:16
-
AzamatAmangaliev124.10.2022 19:25
-
00KARTOSHKA0016.10.2021 00:57
-
dakar364205.11.2020 18:03
-
Yyyyyyshdvjfc25.12.2022 22:32
-
Мини19617.02.2021 05:08
-
oytu06.01.2022 15:35
-
2000030428.06.2022 01:40
-
manzer9526.09.2022 14:02
-
Eva576829.03.2022 07:52
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.