Троллейбус за 12 с прошел путь 150 м какую скорость он приобрел в конце пути и с каким ускорением он двигался?
Ответы на вопрос:
иболее важными областями применения сверхпроводников является создание сильных магнитных полей, получение и передача электроэнергии. Соленоид из сверхпроводящего материала может работать без подвода энергии извне сколь угодно долго, поскольку однажды возбужденный в нем ток не затухает. Поддержание соленоида в сверхпроводящем состоянии не требует больших энергетических затрат. При нулевом сопротивлении легко решается проблема теплоотвода. Кроме того, сверхпроводящие магниты намного компактнее обычных. Каждый килограмм массы сверхпроводящего магнита создает магнитное поле, эквивалентное по силе полю 20-тонного электромагнита с железным сердечником.
Сверхпроводящие магниты используют для исследований в области физики высоких энергий, создания мощных магнитных кольцевых ускорителей частиц и систем управления движением пучков частиц на выходе из ускорителя.
Проблемы термоядерной энергетики не могут быть решены без применения мощных сверхпроводящих магнитов. Для осуществления управляемого термоядерного синтеза ядер гелия из ядер дейтерия и трития необходимо удерживать в реакционном горячую тритий-дейтериевую плазму, нагретую до 108 – 109°С. Только сверхпроводящие магниты создать поля такой мощности.
В ближайшем будущем большой вклад в решение энергетической проблемы возможен за счет повышения термодинамического коэффициента полезного действия тепловых электростанций с использованием МГД-генераторов, принципиальная схема которых показана на рисунке 1.
Рисунок 1 – Принципиальная схема МГД-генератора: 1 – потребитель; 2 – соленоид; 3 – электрод; 4 – поток плазмы
Ионизированные горячие продукты сгорания топлива в виде низкотем-пературной плазмы с температурой около 2500°С пропускают с большой скоростью через сильное магнитное поле. Образовавшуюся электроэнергию снимают электродами, расположенными вдоль плазменного канала. Таким образом, с МГД-генератора осуществляется прямое преобразование тепловой энергии в электрическую.
В перспективе передачу энергии большой мощности целесообразно осуществлять с сверхпроводящих кабельных подземных линий. Принципиально конструкции сверхпроводящих кабелей постоянного и переменного тока не отличаются друг от друга (рисунок 2).
Рисунок 2 – Схема сечения сверхпроводящих кабелей трехфазного тока с коаксиальными парами проводников (а) и постоянного тока с концентрически расположенными проводниками: 1 – вакуумированное каналы для жидкого азота; 3 - термостатирующая изоляция; 4 – каналы для жидкого гелия; 5 – сверхпроводники; 6 – электрическая изоляция
Сверхпроводящие кабели имеют поперечное сечение в виде ряда мно-гослойных труб с вакуумной изоляцией между ними. Внутренние трубы по-крыты слоем сверхпроводящего материала толщиной около 0,3 мм и заполнены жидким гелием. В качестве сверхпроводника может быть использован сплав ниобия с титаном или цирконием. Кабели подобной конструкции производственные испытания в России, США и Японии.
Сверхпроводимость позволяет также решить проблему запаса электро-энергии впрок с выдачей ее при пиковых нагрузках. Индуктивный накопитель энергии представляет собой тороидальный криостат диаметром несколько метров, по виткам обмотки которого практически без потерь циркулирует ток.
Обычный железнодорожный поезд, движущийся по стальным рельсам, имеет принципиальный предел скорости около 350 км/ч. При его превышении нарушается надежное сцепление колес с рельсами, резко возрастает сила аэродинамического сопротивления, появляется «токосъемный барьер», препятствующий нормальному функционированию системы подвески контактного провода вследствие слишком больших вибраций.
Колеса в поезде на магнитной подушке используются, как в самолете, только для разгона и торможения. По аналогии такие поезда называют магнитопланами.
Применение сверхпроводников в современном мире.
1. Настоящее.
Спектр применений сверхпроводников удобно разделить на:
различные материалы: пленочные проводники, сверхпроводящие магниты и пр.;
микротехника: микроволновые устройства, сверхчувствительные системы обнаружения магнитных полей, цифровая электроника, искусственные биологические системы;
макротехника: силовые кабели, электрические системы и сети, генераторы и двигатели.
В силовых применениях сверхпроводники позволяют снизить энергопотери и сократить массогабаритные показатели оборудования. Высокая плотность тока в сверхпроводниках позволяет уменьшать размеры оборудования, а также создавать магнитные поля высокой интенсивности, недостижимые обычной аппаратурой. Ограничивающим фактором является необходимость поддержания проводника при низкой температуре, что само по себе требует энергозатрат, поэтому наиболее актуальны применения в устройствах большой мощности. В этом случае затраты на криообеспечение пренебрежимо малы.
Объяснение:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Физика
-
06062007ивант03.02.2020 09:44
-
elenshv14.11.2020 16:38
-
bekahasanov12.09.2021 08:03
-
10011623.08.2021 02:14
-
hitecheldo15507.07.2020 05:49
-
Natasha18303814.07.2020 04:53
-
DoVInterER14.04.2023 09:05
-
eminememetova228.01.2020 08:28
-
masha282020.01.2022 17:53
-
BigAwto23.09.2020 00:27
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.