Есть ответ 👍

При каких значениях параметра b корни уравнения 4x^+(3b^-5[b]+2)x-3=0 равны по модулю?

132
314
Посмотреть ответы 2

Ответы на вопрос:


Видимо, [b] - это модуль, а не целая часть. если это все же целая часть, то я вообще не знаю, как такое решать. решаем квадратное уравнение 4x^2 + (3b^2 - 5[b] + 2)x - 3 = 0 1) если b < 0, то [b] = -b, тогда 4x^2 + (3b^2 + 5b + 2)x - 3 = 0 d = (3b^2+5b+2)^2  - 4*4*(-3) = (3b^2+5b+2)^2 + 48 > 0 при любом b, потому что это сумма квадрата и числа 48. x1 = (-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8 x2 = (-3b^2 - 5b - 2 + √((3b^2+5b+2)^2 + 48)) / 8 и они должны быть равны по модулю, то есть либо равны, либо противоположны. а) x1 = -x2 (-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8 = = (3b^2 + 5b + 2 - √((3b^2+5b+2)^2 + 48)) / 8 отсюда получаем -3b^2 - 5b - 2 = 3b^2 + 5b + 2 (3b^2 + 5b + 2) + (3b^2 + 5b + 2) = 0 3b^2 + 5b + 2 = 0 d = 25 - 4*3*2 = 25 - 24 = 1 b1 = (-5 - 1)/6 = -1 < 0 b2 = (-5 + 1)/6 = -2/3 < 0 оба значения подходят. б) x1 = x2 (-3b^2 - 5b - 2 - √((3b^2+5b+2)^2 + 48)) / 8 = = (-3b^2 - 5b - 2 + √((3b^2+5b+2)^2 + 48)) / 8 отсюда получаем √((3b^2+5b+2)^2 + 48) = -√((3b^2+5b+2)^2 + 48) 2√((3b^2+5b+2)^2 + 48) = 0 √((3b^2+5b+2)^2 + 48) = 0 (3b^2+5b+2)^2 + 48 = 0 решений нет, потому что это сумма квадрата и числа 48., 2) если b > 0, то [b] = b 4x^2 + (3b^2 - 5b + 2)x - 3 = 0 d = (3b^2-5b+2)^2  - 4*4*(-3) = (3b^2-5b+2)^2 + 48 > 0 при любом b, потому что это сумма квадрата и числа 48. x1 = (-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8 x2 = (-3b^2 + 5b - 2 + √((3b^2-5b+2)^2 + 48)) / 8 и они должны быть равны по модулю, то есть либо равны, либо противоположны. а) x1 = -x2 (-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8 = = (3b^2 - 5b + 2 - √((3b^2-5b+2)^2 + 48)) / 8 отсюда получаем -3b^2 + 5b - 2 = 3b^2 - 5b + 2 (3b^2 - 5b + 2) + (3b^2 - 5b + 2) = 0 3b^2 - 5b + 2 = 0 d = 25 - 4*3*2 = 25 - 24 = 1 b1 = (5 + 1)/6 = 1 > 0 b2 = (5 - 1)/6 = 2/3 > 0 оба значения подходят. б) x1 = x2 (-3b^2 + 5b - 2 - √((3b^2-5b+2)^2 + 48)) / 8 = = (-3b^2 + 5b - 2 + √((3b^2-5b+2)^2 + 48)) / 8 отсюда получаем √((3b^2-5b+2)^2 + 48) = -√((3b^2-5b+2)^2 + 48) 2√((3b^2-5b+2)^2 + 48) = 0 √((3b^2-5b+2)^2 + 48) = 0 (3b^2-5b+2)^2 + 48 = 0 решений нет, потому что это сумма квадрата и числа 48., ответ: b1 = -1; b2 = -2/3; b3 = 2/3; b4 = 1
nikitagarin2
4,8(55 оценок)

-4,6

Объяснение:

7*(3+х)=2*(х-5)+8

21+7x=2x-10+8

7x-2x=-10+8-21 (числа в одну сторону, неизвестные в другую)

5x=-23

x=-23/5

x=-4,6

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS