Ответы на вопрос:
1. введение 2
2. описание способа “решето эратосфена” 3
3 заключение 6
4. список используемой 7
введение
эратосфен ( ок. 276-194 до н. э.) - греческий писатель и ученый. эратосфен родился в африке, в кирене. учился сначала в александрии, а затем в афинах.
он руководил александрийской библиотекой и был воспитателем наследника престола. эратосфен был образованным и разносторонним человеком, он занимался филологией, хронологией, , астрономией, , сам писал стихи. эратосфен заложил основы , вычислив с большой точностью величину земного шара.
в эратосфена интересовал вопрос о том, как найти все простые числа среди натуральных чисел от 1 до . (эратосфен считал 1 простым числом. сейчас считают 1 числом особого вида, которое не относится ни к простым, ни к составным числам.) он придумал способ получения всех простых чисел, который известен как «решето эратосфена».
описание способа “решето эратосфена”
сначала выписываем все натуральные числа от 2 до заданного числа, например до 120. наименьшее из них 2 – простое. остальные числа кратные двум (четные) вычёркиваются
23456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120на втором шаге вычёркиваем все числа кратные трем, кроме наименьшего из них, самого числа 3. оно простое
23456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120продолжаем по тому же правилу. наименьшее из чисел, оставшихся после предыдущего шага, будет простым. а все другие кратные ему числа вычёркиваются.
вычёркиваем числа кратные 5.
23456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120вычёркиваем числа кратные 7.
23456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120пользуясь решетом эратосфена вычеркивание можно прекратить, как только мы дойдем до простого числа, которое больше чем √n (где n- последнее заданное число). к этому моменту все не вычеркнутые числа будут простыми.
в нашем случае при n=120, после того, как мы вычеркнули числа кратные 7, дальнейшее вычёркивание можно не производить.
23456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120применяя метод эратосфена, мы как бы отсеяли, пропустили через решето все составные числа и оставили только простые.
так как во времена эратосфена писали на восковых табличках и не вычеркивали, а "выкалывали" цифры, то табличка после описанного процесса напоминала решето. именно поэтому метод эратосфена для нахождения простых чисел получил название "решето эратосфена".
заключение
итак, решето эратосфена работает как своего рода аналоговая вычислительная машина. и, значит, вот что изобрел великий грек: он изобрел счетную машину! а ведь для простых чисел не существует даже формулы, по которой их можно вычислить все. нет такой формулы, а решето есть. и создав решето эратосфена достаточно большого размера, мы отсеем (построим) все простые числа без исключения. все они окажутся в дырках совершенно правильного решета! так «правильно» ли их расположение или неправильно»? никто не может сказать.
есть какая-то странность в этих простых числах. вроде бы в решете эратосфена нет никаких случайностей и должна получаться точная и легко записываемая формулой последовательность. но — как ни странно — ничего подобного: формулы нет! сколько столетий уже искали — нет!
в это настолько не верится, что и сегодня начинают искать несуществующую формулу. но эти поиски не заканчиваются может быть, повезёт мне?
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
SuperKiri17.03.2021 02:03
-
Katriysha27.03.2021 05:14
-
света861223.02.2020 07:49
-
Elenamikki26.05.2020 13:32
-
SmertKiller23.12.2022 00:17
-
inga5030.12.2021 08:49
-
akikoaki14.08.2022 17:26
-
peterburg127.04.2023 20:53
-
Lifeismyy04.03.2023 09:23
-
Velichkovskaya24.11.2021 22:24
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.