Стороны ас, ав и вс треуголника авс равны 2√5,√13 и 2 соответственно. точка к расположена вне треугольника авс, причем отрезок кс пересекает сторону ав в точке, отличной от в. известно, что треугольник с вершинами к, а и с подобен исходному. найдите косинус угла ∠акс, если ∠кас> 90° . (желательно с чертежом)
104
229
Ответы на вопрос:
Треугольники авс и акс подобны, значит соответственные углы у них равны. в δавс найдём косинусы каждого из трёх его углов по теореме косинусов a² = b² + c² - 2*b*c* cos< a, где a, b, c - длины сторон треугольника, < a - угол, противолежащий искомой стороне отсюда выразим косинус угла cos< a = (b² + c² - a²) / (2bc) 1) cos a=(ab² + ac² - bc²) / (2*ab*ac) = (√13² + (2√5)² - 2²) / (2*√13 * 2√5) = = 29/(4√65) > 0 значит, < а - острый 2) cos b=( ab² + bc² - ac²) / (2*ab*bc) =( (√13² + 2² - (2√5)² ) / (2* 2√5 * 2) = = (13 + 4 - 20) / (4√5) = - 3/(4√5) < 0 при отрицательном значении косинуса < b - тупой 3) cos c= (ac² + bc² - ab²) / (2*ac*bc) =( (2√5)² + 2² - √13²) / (2*2√5 * 2) = = (20 + 4 - 13)/ (8√5) = 11/ (8√5) > 0 < c - острый отрицательное значение у угла в, < в тупой => < b = < акс, тогда cos < akc = 3 /(4√5) = о твет 3 /(4√5) или
1предл. (распространенное,простое,не восклицательное,повествовательное) [= -] 2предл. (распространенное,простое, повествовательное,не восклицательное) [- =] 3предл. (распространенное, простое,распространенное,не восклицательное ) [- =] если не правильно сорри удачи.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
Pacan4ikForever28.07.2022 06:23
-
dayanka1318.08.2021 13:21
-
Алкадиеныч07.03.2022 19:33
-
LugovoyDanila26.02.2023 07:35
-
Dabbnathion14.05.2023 23:31
-
опернг16.04.2020 10:19
-
kokocuk0128.12.2022 21:13
-
Tomokl03.04.2021 01:55
-
tatyana171283t17.05.2021 15:03
-
baevivanx2017x30.08.2022 23:26
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.