DontRobot
04.07.2022 16:29
Алгебра
Есть ответ 👍

Найти область определения функции y=sqrt4x^2-4x ; y=-1/(x-2)^3

138
407
Посмотреть ответы 2

Ответы на вопрос:

Katya124354
4,5(14 оценок)

1)4x²-4x≥0 4x(x-1)≥0 x=0  x=1 x∈(-∞; 0] u [1; ∞)
Thanks2y
4,6(31 оценок)

Int (x^2+2x-1)*cos 3x dx = int x^2*cos 3x dx + 2*int x*cos 3x dx - int cos 3x dx = a решаем каждый интеграл по отдельности. первый - 2 раза по частям. int x^2*cos 3x dx = 1/9*int (3x)^2*cos 3x dx = |3x = y, dy = 3dx| = = 1/27*int y^2*cos y dy = |u=y^2, dv=cos y dy, du = 2y dy, v=sin y| = = 1/27*(y^2*sin y - 2*int y*sin y dy) = |u=y, dv=sin y, du=dy, v=-cos y| = = 1/27*y^2*sin y - 2/27*(-y*cos y + int cos y dy) = = y^2/27*sin y + 2y/27*cos y - 2/27*sin y = x^2/3*sin 3x + 2x/9*cos 3x - 2/27*sin 3x int x*cos 3x dx берется точно также, только один раз по частям. int x*cos 3x dx = |y = 3x| = 1/9*int y*cos y dy = |u=y, dv=cos y, du=dy, v=sin y| = 1/9*(y*sin y - int sin y dy) = x/3*sin 3x + 1/9*cos 3x int cos 3x dx = 1/3*sin 3x подставляем все это в интеграл a = x^2/3*sin 3x+2x/9*cos 3x-2/27*sin 3x+2x/3*sin 3x+2/9*cos 3x-1/3*sin 3x+c = = sin 3x*(x^2/3 + 2x/3 - 2/27 - 1/3) + cos x*(2x/9 + 2/9) + c = = 1/3*sin 3x*(x^2 + 2x + 1) + x/9*cos x*(2x + 2) - 2/27*sin 3x + c

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS