Найдите площадь трапеции у которой основания равны 6 см и 9 см, а диагонали - 13 см и 14 см
Ответы на вопрос:
площадь трапеции равна полусумме оснований умножемых на высоту ((bc+ad)/2*км) трапеция равнобокая значит диагонали делятся в равном отношении где во=ос и ао=од значит треуг вос и аод равнобедренный и углы при основании 45. высота равна ко+ом ко=1/2вс*tg45=7 ом=1/2ад*tg45=9 (tg45=1) km=7+9=16 s=16*(14+18)/2=256
2)сначала докажем что биссектриса совпадает с медианой:
ad = cd, т. е. bd - биссектриса и bda = bdc = 90°; таким образом, bd также и высота треугольника и медиана abc.
медиана делит этот треугольник на 2 равновеликих(равных)тоесть abd=cad если точки m и k являються серединами сторон разных(но равных) треугольников, то соответственно akd=cm
3) сначала докажем что биссектриса совпадает с медианой: ah = ch, т. е. bh - биссектриса и bha = bhc = 90°; таким образом, bh также и высота треугольника и медиана abc. нарисовали ресунокabc - треугольник bh - высотаони равны так как: 1) сторона bh - общяя2) угол bah = углу bch (как углы равнобедренного треугольника)3) угол ahb=ahc как углы при высоте(прямые)4) сторона ab= строное bc( как стороны равнобедренного треугольника)значит, треугольники равны
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
Алия005111.08.2021 08:02
-
Bdof7200510.12.2021 09:34
-
фриск1234511.09.2022 13:35
-
меаавепеу10.11.2022 07:01
-
Дианочка14003.12.2020 11:49
-
Саша9999009.12.2022 21:40
-
kotletka22312.08.2020 18:41
-
нура4901.10.2022 07:29
-
fox36807.01.2023 12:02
-
морган330.06.2022 17:29
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.