Есть ответ 👍

Конус и цилиндр имеют одинаковые основания, радиус которых равен 3, и одинаковые высоты, равные 4. на сколько больше боковая поверхность цилиндра, чем конуса?

186
398
Посмотреть ответы 2

Ответы на вопрос:

маркен2
4,5(82 оценок)

Наклонная конуса по теореме пифагора равна кореньиз (9+16)=кореньиз (25)=5, тогда s_бокповерхконуса=пи*3*5=15пи. s_бокповерхцилиндра=2*пи*3*4=24пи. искомая разность равна 24пи-15пи=9пи. ответ: 9пи.
arrow34
4,4(42 оценок)

33,9(м^3).

Объяснение:

Дано:

R(2)=2R(1)

S(осев.сеч.)=36м²

S(бок.пов.)=S(осн.1)+S(осн.2)

-------------------------------------------

V(усеч. кон.)= ?

S(осн.2)=pi*R(2)²=pi*(2*R(1))²=4pi*R(1)²

S(осн.1)=pi*R(1)²

S(бок.пов.)=4pi*R(1)²+pi*R(1)²=5pi*R(1)²

5pi*R(1)²=36

R(1)²=36/5pi

R(1)=√36/5pi=6/√5pi

S(бок.пов.усеч.кон.)=S(бок.пов.2)-S(бок.пов.1)=

=1/2*C(2)L(2)-1/2*C(1)L(1)=

=1/2*2pi*2R(1)*2L(1)-1/2*2pi*R(1)*L(1)=

=4*pi*R(1)*L(1)-pi*R(1)*L(1)=3pi*R(1)*L(1)=36

Осевые сечения большого и малого конусов

являются подобными треугольниками .

По условию коэффициент подобия равен 2.

⇒ L(2)/L(1)=2

   R(2)/R(1)=2

   h(2)/h(1)=2

L(1)=36/3*pi*R(1)*L(1)

L(1)=12/pi*R(1)

L(1)=12/pi/R(1)=12*√5pi/pi*6=2*√5pi/pi

V(усеч.кон.)=V(кон.2)-V(кон.1)=

=1/3S(осн.2)*h(2)-1/3S(осн.1)*h(1)=

1/3*pi*(2R(1))²*2h(1)-1/3*pi*R(1)²*h(1)=

=1/3*pi*4R(1)²*2h(1)-1/3*pi*R(1)²*h(1)=

=1/3*pi*R(1)²(8h(1)-h(1))=1/3*pi*R(1)²*7h(1)

Высота конуса перпендикулярна основанию.

Выcота конуса,образующая и радиус основания

образуют прямоугольный треугольник ⇒ по теореме

Пифагора: h(1)²=L(1)²-R(1)²

L(1)²=(2*√5pi/pi)²=4*5*pi/pi²=20/pi

h(1)²=L(1)²-R(1)²

h(1)²=20/pi-36/5pi=100/5pi-36/5pi=64/5pi

h(1)=√64/5pi=8/√5pi

V(усеч.кон)=1/3*pi*R(1)² *7*h(1)=

=1/3pi*36/5pi*7*8/√5pi=134,4/(5pi)=

=33,9(м^3).

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS