Треугольник авс - прямоугольный, угол асв=90 градусов. сд перпендикулярно ав, вд=16 см, сд=4 см. найти ад, ас, вс.
300
500
Ответы на вопрос:
Теорема 1 (теорема пифагора). в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть c2 = a2 + b2,где c — гипотенуза треугольника. теорема 2. для прямоугольного треугольника (рис. 1) верны следующие соотношения: a = c cos β = c sin α = b tg α = b ctg β, где c — гипотенуза треугольника. теорема 3. пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). тогда справедливы следующие равенства: h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb. теорема 4 (теорема косинусов). для произвольного треугольника справедлива формулаa2 = b2 + c2 – 2bc cos α. теорема 5. около всякого треугольника можно описать окружность и притом только одну. центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. центр описанной окружности лежит внутри треугольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3). теорема 6 (теорема синусов). для произвольного треугольника (рис. 4) справедливы соотношения теорема 7. во всякий треугольник можно вписать окружность и притом только одну (рис. 5).центр этой окружности есть точка пересечения биссектрис трех углов треугольника. центр вписанной окружности лежит всегда внутри треугольника. теорема 8 (формулы для вычисления площади треугольника). 4последняя формула называется формулой герона. теорема 9 (теорема о биссектрисе внутреннего угла). биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то естьb : c = x : y. теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6) . теорема 11 (формула для вычисления длины биссектрисы). теорема 12. медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7). теорема 13 (формула для вычисления длины медианы). доказательства некоторых теоремдоказательство теоремы 10. построим треугольник abc и проведем в нем биссектрису ad (рис. 8). пусть cd = x и db = y. применим к треугольникам abd и acd теорему косинусов: bd2 = ab2 + ad2 – 2∙ab∙ad∙cos ∠bad; cd2 = ac2 + ad2 – 2∙ac∙ad∙cos ∠cad.или, что то же самое, выразим из каждого неравенства и приравняем полученные результаты: применив теперь к треугольнику abc теорему о биссектрисе внутреннего угла, получим, что отдельно преобразуем выражение cx2 – by2: последнее равенство верно в силу того, что имеем далее: если c ≠ b, то, сократив обе части равенства на c – b, получим требуемую формулу; если же c = b, то данная теорема сводится к теореме пифагора. доказательство теоремы 11. построим треугольник abc и проведем в нем биссектрису ad (см. рис. 8). имеем: с другой стороны, приравнивая полученные двумя способами значения площади треугольника abc, имеем: при этом мы использовали формулу доказательство теоремы 13. построим треугольник abc и проведем в нем медиану aa1 (см. рис. 7). применим в треугольниках aa1b и aa1c теорему косинусов: или, что то же самое, где ϕ = ∠aa1b. так как cos (π – ϕ) = –cos ϕ, сложив последние два равенства, получим: решение 1. в прямоугольном треугольнике abc из вершины прямого угла c проведены биссектриса cl и медиана cm (рис. 9). найти площадь треугольника abc, если lm = a, cm = b.решение. медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы. поэтому am = bm = b,откуда al = b – a, lb = b + a. применим к треугольнику abc теорему о биссектрисе внутреннего угла треугольника: применив теперь к треугольнику abc теорему пифагора, получим: откуда а искомая площадь равна ответ: 2. в треугольнике abc задана точка m на стороне ac, соединенная с вершиной b отрезком mb (рис. 10). известно, что am = 6, mc = 2, ∠abm = 60°, ∠mbc = 30°. найти площадь треугольника abc.решение. применим к треугольникам abm и bcm теорему синусов: так как треугольник abc прямоугольный, то разделив равенство (1) на равенство (2), с учетом sin ∠amb = sin ∠bmc находим, что откуда ∠acb = 60°.значит, площадь треугольника abc равна ответ:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
vikulyagorobet15.02.2022 13:09
-
kirill67r30.06.2020 05:18
-
arsenkam03.01.2021 12:02
-
ОляRu07.06.2020 17:52
-
kuku2s30.03.2023 14:23
-
uychuuus11.01.2023 09:12
-
karpovaarina10.09.2022 17:22
-
SashaKo942002.12.2021 22:30
-
emilgaripov8716.02.2022 20:21
-
nbibyf200517.06.2020 11:36
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.