Один из корней уравнения 2x^2+10x+q=0 на 3 больше другого.найдите свободный член q.заранее !
Ответы на вопрос:
получается, что х1=х2+3 по т. виета получаем систему х2+3+х2= -5 x1*х2=q/2 2x2=-8 x2= -4 x1= -4+3= -1 -4*(-1)=q/2 q=8 x1 и х2 - корни уравнения
Например, система уравнений может быть задана следующим образом.
x + 5y = 7
3x − 2y = 4
Чтобы решить систему уравнений, нужно найти и «x», и «y».
Разберем подстановки на примере.
x + 5y = 7
3x − 2y = 4
Выразим из первого уравнения «x + 5y = 7» неизвестное «x».
Перенесём в первом уравнении «x + 5 y = 7» всё что содержит «x» в левую часть, а остальное в правую часть по правилу переносу.
При «x» стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.
x = 7 − 5y
3x − 2y = 4
Теперь, вместо «x» подставим во второе уравнение полученное выражение
«x = 7 − 5y» из первого уравнения.
x = 7 − 5y
3(7 − 5y) − 2y = 4
Подставив вместо «x» выражение «(7 − 5y)» во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным «y». Решим его по правилам решения линейных уравнений.
Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение «3(7 − 5y) − 2y = 4» отдельно. Вынесем его решение отдельно с обозначения звездочка (*).
x = 7 − 5y
3(7 − 5y) − 2y = 4 (*)
(*) 3(7 − 5y) − 2y = 4
21 − 15y − 2y = 4
− 17y = 4 − 21
− 17y = − 17 | :(−17)
y = 1
Мы нашли, что «y = 1». Вернемся к первому уравнению «x = 7 − 5y» и вместо «y» подставим в него полученное числовое значение. Таким образом можно найти «x». Запишем в ответ оба полученных значения.
x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1
ответ: x = 2; y = 1
сложения
Рассмотрим другой решения системы уравнений. Метод называется сложения. Вернемся к нашей системе уравнений еще раз.
x + 5y = 7
3x − 2y = 4
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
Svetlanaaaa1609.01.2020 13:06
-
GeliaSecret200509.02.2021 09:42
-
Lolkekcheburek22832216.04.2022 04:26
-
kojb59583301.08.2021 07:58
-
elisbuh17.04.2021 08:41
-
12347810193406.07.2020 11:15
-
Tapoocek13.05.2023 02:07
-
Poligrinka08.04.2022 18:53
-
123435323406.03.2020 18:05
-
mrrr1512.05.2021 18:10
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.